Mercurial > public > mercurial-scm > hg-stable
view rust/hg-core/src/revlog/nodemap.rs @ 45907:06b64fabf91c
copies: cache the ancestor checking call when tracing copy
A good share of the time spent in this function is spent doing ancestors
checking. To avoid spending time in duplicated call, we cache the result of
calls.
In the slower case, this provide a quite significant performance boost. Below
are the result for a set of selected pairs (many of them pathological):
(And further down is another table that summarize the current state of filelog
based vs changeset base copy tracing)
The benchmark have been configured to be killed after 6 minutes of runtime,
which mean that any detect slower than 2 minutes will be marked as "killed".
This drop some useful information about how much slower these case are? but also
prevent 99% of the benchmark time to be spent on case that can be labelled "very
slow" anyway.
Repo Case Source-Rev Dest-Rev Old-Time New-Time Difference Factor
------------------------------------------------------------------------------------------------------------------------------------
mercurial x_revs_x_added_0_copies ad6b123de1c7 39cfcef4f463 : 0.000044 s, 0.000044 s, +0.000000 s, ? 1.0000
mercurial x_revs_x_added_x_copies 2b1c78674230 0c1d10351869 : 0.000138 s, 0.000138 s, +0.000000 s, ? 1.0000
mercurial x000_revs_x000_added_x_copies 81f8ff2a9bf2 dd3267698d84 : 0.005067 s, 0.005052 s, -0.000015 s, ? 0.9970
pypy x_revs_x_added_0_copies aed021ee8ae8 099ed31b181b : 0.000218 s, 0.000219 s, +0.000001 s, ? 1.0046
pypy x_revs_x000_added_0_copies 4aa4e1f8e19a 359343b9ac0e : 0.000053 s, 0.000055 s, +0.000002 s, ? 1.0377
pypy x_revs_x_added_x_copies ac52eb7bbbb0 72e022663155 : 0.000125 s, 0.000128 s, +0.000003 s, ? 1.0240
pypy x_revs_x00_added_x_copies c3b14617fbd7 ace7255d9a26 : 0.001098 s, 0.001089 s, -0.000009 s, ? 0.9918
pypy x_revs_x000_added_x000_copies df6f7a526b60 a83dc6a2d56f : 0.017546 s, 0.017407 s, -0.000139 s, ? 0.9921
pypy x000_revs_xx00_added_0_copies 89a76aede314 2f22446ff07e : 0.096723 s, 0.094175 s, -0.002548 s, ? 0.9737
pypy x000_revs_x000_added_x_copies 8a3b5bfd266e 2c68e87c3efe : 0.271796 s, 0.238009 s, -0.033787 s, ? 0.8757
pypy x000_revs_x000_added_x000_copies 89a76aede314 7b3dda341c84 : 0.128602 s, 0.125876 s, -0.002726 s, ? 0.9788
pypy x0000_revs_x_added_0_copies d1defd0dc478 c9cb1334cc78 : 7.086742 s, 3.581556 s, -3.505186 s, ? 0.5054
pypy x0000_revs_xx000_added_0_copies bf2c629d0071 4ffed77c095c : 0.016634 s, 0.016721 s, +0.000087 s, ? 1.0052
pypy x0000_revs_xx000_added_x000_copies 08ea3258278e d9fa043f30c0 : 0.254225 s, 0.242367 s, -0.011858 s, ? 0.9534
netbeans x_revs_x_added_0_copies fb0955ffcbcd a01e9239f9e7 : 0.000166 s, 0.000165 s, -0.000001 s, ? 0.9940
netbeans x_revs_x000_added_0_copies 6f360122949f 20eb231cc7d0 : 0.000118 s, 0.000114 s, -0.000004 s, ? 0.9661
netbeans x_revs_x_added_x_copies 1ada3faf6fb6 5a39d12eecf4 : 0.000296 s, 0.000296 s, +0.000000 s, ? 1.0000
netbeans x_revs_x00_added_x_copies 35be93ba1e2c 9eec5e90c05f : 0.001137 s, 0.001124 s, -0.000013 s, ? 0.9886
netbeans x000_revs_xx00_added_0_copies eac3045b4fdd 51d4ae7f1290 : 0.014133 s, 0.013060 s, -0.001073 s, ? 0.9241
netbeans x000_revs_x000_added_x_copies e2063d266acd 6081d72689dc : 0.016988 s, 0.017112 s, +0.000124 s, ? 1.0073
netbeans x000_revs_x000_added_x000_copies ff453e9fee32 411350406ec2 : 0.676361 s, 0.660350 s, -0.016011 s, ? 0.9763
netbeans x0000_revs_xx000_added_x000_copies 588c2d1ced70 1aad62e59ddd : 12.515149 s, 10.032499 s, -2.482650 s, ? 0.8016
mozilla-central x_revs_x_added_0_copies 3697f962bb7b 7015fcdd43a2 : 0.000186 s, 0.000189 s, +0.000003 s, ? 1.0161
mozilla-central x_revs_x000_added_0_copies dd390860c6c9 40d0c5bed75d : 0.000459 s, 0.000462 s, +0.000003 s, ? 1.0065
mozilla-central x_revs_x_added_x_copies 8d198483ae3b 14207ffc2b2f : 0.000273 s, 0.000270 s, -0.000003 s, ? 0.9890
mozilla-central x_revs_x00_added_x_copies 98cbc58cc6bc 446a150332c3 : 0.001503 s, 0.001474 s, -0.000029 s, ? 0.9807
mozilla-central x_revs_x000_added_x000_copies 3c684b4b8f68 0a5e72d1b479 : 0.004862 s, 0.004806 s, -0.000056 s, ? 0.9885
mozilla-central x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 0.088291 s, 0.085150 s, -0.003141 s, ? 0.9644
mozilla-central x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 0.007113 s, 0.007064 s, -0.000049 s, ? 0.9931
mozilla-central x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 0.004687 s, 0.004741 s, +0.000054 s, ? 1.0115
mozilla-central x000_revs_x000_added_x000_copies 7c97034feb78 4407bd0c6330 : 0.198710 s, 0.190133 s, -0.008577 s, ? 0.9568
mozilla-central x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 0.036068 s, 0.035651 s, -0.000417 s, ? 0.9884
mozilla-central x0000_revs_xx000_added_x000_copies f78c615a656c 96a38b690156 : 0.465362 s, 0.440694 s, -0.024668 s, ? 0.9470
mozilla-central x00000_revs_x0000_added_x0000_copies 6832ae71433c 4c222a1d9a00 : 24.519684 s, 18.454163 s, -6.065521 s, ? 0.7526
mozilla-central x00000_revs_x00000_added_x000_copies 76caed42cf7c 1daa622bbe42 : 42.711897 s, 31.562719 s, -11.149178 s, ? 0.7390
mozilla-try x_revs_x_added_0_copies aaf6dde0deb8 9790f499805a : 0.001201 s, 0.001189 s, -0.000012 s, ? 0.9900
mozilla-try x_revs_x000_added_0_copies d8d0222927b4 5bb8ce8c7450 : 0.001216 s, 0.001204 s, -0.000012 s, ? 0.9901
mozilla-try x_revs_x_added_x_copies 092fcca11bdb 936255a0384a : 0.000595 s, 0.000586 s, -0.000009 s, ? 0.9849
mozilla-try x_revs_x00_added_x_copies b53d2fadbdb5 017afae788ec : 0.001856 s, 0.001845 s, -0.000011 s, ? 0.9941
mozilla-try x_revs_x000_added_x000_copies 20408ad61ce5 6f0ee96e21ad : 0.064936 s, 0.063822 s, -0.001114 s, ? 0.9828
mozilla-try x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 0.090601 s, 0.088038 s, -0.002563 s, ? 0.9717
mozilla-try x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 0.007510 s, 0.007389 s, -0.000121 s, ? 0.9839
mozilla-try x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 0.004911 s, 0.004868 s, -0.000043 s, ? 0.9912
mozilla-try x000_revs_x000_added_x000_copies 1346fd0130e4 4c65cbdabc1f : 0.233231 s, 0.222450 s, -0.010781 s, ? 0.9538
mozilla-try x0000_revs_x_added_0_copies 63519bfd42ee a36a2a865d92 : 0.419989 s, 0.370675 s, -0.049314 s, ? 0.8826
mozilla-try x0000_revs_x_added_x_copies 9fe69ff0762d bcabf2a78927 : 0.401521 s, 0.358020 s, -0.043501 s, ? 0.8917
mozilla-try x0000_revs_xx000_added_x_copies 156f6e2674f2 4d0f2c178e66 : 0.179555 s, 0.145235 s, -0.034320 s, ? 0.8089
mozilla-try x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 0.038004 s, 0.037606 s, -0.000398 s, ? 0.9895
mozilla-try x0000_revs_xx000_added_x000_copies 89294cd501d9 7ccb2fc7ccb5 : 52.838482 s, 7.382439 s, -45.456043 s, ? 0.1397
mozilla-try x0000_revs_x0000_added_x0000_copies e928c65095ed e951f4ad123a : 8.705874 s, 7.273506 s, -1.432368 s, ? 0.8355
mozilla-try x00000_revs_x00000_added_0_copies dc8a3ca7010e d16fde900c9c : 1.126708 s, 1.074593 s, -0.052115 s, ? 0.9537
mozilla-try x00000_revs_x0000_added_x0000_copies 8d3fafa80d4b eb884023b810 : 83.854020 s, 27.746195 s, -56.107825 s, ? 0.3309
Below is a table comparing the runtime of the current "filelog centric"
algorithm, with the "changeset centric" one, we just modified.
The changeset centric algorithm is a significant win in many scenario, but they
are still various cases where it is quite slower. When many revision has to be
considered the cost of retrieving the copy information, creating new
dictionaries, merging dictionaries and checking if revision are ancestors of
each other can slow things down.
The rest of this series, will introduce a rust version of the copy tracing code
to deal with most of theses issues.
Repo Case Source-Rev Dest-Rev filelog sidedata Difference Factor
---------------------------------------------------------------------------------------------------------------------------------------
mercurial x_revs_x_added_0_copies ad6b123de1c7 39cfcef4f463 : 0.000914 s, 0.000044 s, - 0.000870 s, ? 0.048140
mercurial x_revs_x_added_x_copies 2b1c78674230 0c1d10351869 : 0.001812 s, 0.000138 s, - 0.001674 s, ? 0.076159
mercurial x000_revs_x000_added_x_copies 81f8ff2a9bf2 dd3267698d84 : 0.017954 s, 0.005052 s, - 0.012902 s, ? 0.281386
pypy x_revs_x_added_0_copies aed021ee8ae8 099ed31b181b : 0.001509 s, 0.000219 s, - 0.001290 s, ? 0.145129
pypy x_revs_x000_added_0_copies 4aa4e1f8e19a 359343b9ac0e : 0.206881 s, 0.000055 s, - 0.206826 s, ? 0.000266
pypy x_revs_x_added_x_copies ac52eb7bbbb0 72e022663155 : 0.016951 s, 0.000128 s, - 0.016823 s, ? 0.007551
pypy x_revs_x00_added_x_copies c3b14617fbd7 ace7255d9a26 : 0.019096 s, 0.001089 s, - 0.018007 s, ? 0.057028
pypy x_revs_x000_added_x000_copies df6f7a526b60 a83dc6a2d56f : 0.762506 s, 0.017407 s, - 0.745099 s, ? 0.022829
pypy x000_revs_xx00_added_0_copies 89a76aede314 2f22446ff07e : 1.179211 s, 0.094175 s, - 1.085036 s, ? 0.079863
pypy x000_revs_x000_added_x_copies 8a3b5bfd266e 2c68e87c3efe : 1.249058 s, 0.238009 s, - 1.011049 s, ? 0.190551
pypy x000_revs_x000_added_x000_copies 89a76aede314 7b3dda341c84 : 1.614107 s, 0.125876 s, - 1.488231 s, ? 0.077985
pypy x0000_revs_x_added_0_copies d1defd0dc478 c9cb1334cc78 : 0.001064 s, 3.581556 s, + 3.580492 s, ? 3366.124060
pypy x0000_revs_xx000_added_0_copies bf2c629d0071 4ffed77c095c : 1.061275 s, 0.016721 s, - 1.044554 s, ? 0.015756
pypy x0000_revs_xx000_added_x000_copies 08ea3258278e d9fa043f30c0 : 1.341119 s, 0.242367 s, - 1.098752 s, ? 0.180720
netbeans x_revs_x_added_0_copies fb0955ffcbcd a01e9239f9e7 : 0.027803 s, 0.000165 s, - 0.027638 s, ? 0.005935
netbeans x_revs_x000_added_0_copies 6f360122949f 20eb231cc7d0 : 0.130014 s, 0.000114 s, - 0.129900 s, ? 0.000877
netbeans x_revs_x_added_x_copies 1ada3faf6fb6 5a39d12eecf4 : 0.024990 s, 0.000296 s, - 0.024694 s, ? 0.011845
netbeans x_revs_x00_added_x_copies 35be93ba1e2c 9eec5e90c05f : 0.052201 s, 0.001124 s, - 0.051077 s, ? 0.021532
netbeans x000_revs_xx00_added_0_copies eac3045b4fdd 51d4ae7f1290 : 0.037642 s, 0.013060 s, - 0.024582 s, ? 0.346953
netbeans x000_revs_x000_added_x_copies e2063d266acd 6081d72689dc : 0.197086 s, 0.017112 s, - 0.179974 s, ? 0.086825
netbeans x000_revs_x000_added_x000_copies ff453e9fee32 411350406ec2 : 0.935148 s, 0.660350 s, - 0.274798 s, ? 0.706145
netbeans x0000_revs_xx000_added_x000_copies 588c2d1ced70 1aad62e59ddd : 3.920674 s, 10.032499 s, + 6.111825 s, ? 2.558871
mozilla-central x_revs_x_added_0_copies 3697f962bb7b 7015fcdd43a2 : 0.024232 s, 0.000189 s, - 0.024043 s, ? 0.007800
mozilla-central x_revs_x000_added_0_copies dd390860c6c9 40d0c5bed75d : 0.141483 s, 0.000462 s, - 0.141021 s, ? 0.003265
mozilla-central x_revs_x_added_x_copies 8d198483ae3b 14207ffc2b2f : 0.025775 s, 0.000270 s, - 0.025505 s, ? 0.010475
mozilla-central x_revs_x00_added_x_copies 98cbc58cc6bc 446a150332c3 : 0.084922 s, 0.001474 s, - 0.083448 s, ? 0.017357
mozilla-central x_revs_x000_added_x000_copies 3c684b4b8f68 0a5e72d1b479 : 0.194784 s, 0.004806 s, - 0.189978 s, ? 0.024673
mozilla-central x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 2.161103 s, 0.085150 s, - 2.075953 s, ? 0.039401
mozilla-central x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 0.089347 s, 0.007064 s, - 0.082283 s, ? 0.079063
mozilla-central x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 0.732171 s, 0.004741 s, - 0.727430 s, ? 0.006475
mozilla-central x000_revs_x000_added_x000_copies 7c97034feb78 4407bd0c6330 : 1.157287 s, 0.190133 s, - 0.967154 s, ? 0.164292
mozilla-central x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 6.726568 s, 0.035651 s, - 6.690917 s, ? 0.005300
mozilla-central x0000_revs_xx000_added_x000_copies f78c615a656c 96a38b690156 : 3.266229 s, 0.440694 s, - 2.825535 s, ? 0.134924
mozilla-central x00000_revs_x0000_added_x0000_copies 6832ae71433c 4c222a1d9a00 : 15.860534 s, 18.454163 s, + 2.593629 s, ? 1.163527
mozilla-central x00000_revs_x00000_added_x000_copies 76caed42cf7c 1daa622bbe42 : 20.450475 s, 31.562719 s, +11.112244 s, ? 1.543373
mozilla-try x_revs_x_added_0_copies aaf6dde0deb8 9790f499805a : 0.080442 s, 0.001189 s, - 0.079253 s, ? 0.014781
mozilla-try x_revs_x000_added_0_copies d8d0222927b4 5bb8ce8c7450 : 0.497672 s, 0.001204 s, - 0.496468 s, ? 0.002419
mozilla-try x_revs_x_added_x_copies 092fcca11bdb 936255a0384a : 0.021183 s, 0.000586 s, - 0.020597 s, ? 0.027664
mozilla-try x_revs_x00_added_x_copies b53d2fadbdb5 017afae788ec : 0.230991 s, 0.001845 s, - 0.229146 s, ? 0.007987
mozilla-try x_revs_x000_added_x000_copies 20408ad61ce5 6f0ee96e21ad : 1.118461 s, 0.063822 s, - 1.054639 s, ? 0.057062
mozilla-try x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 2.206083 s, 0.088038 s, - 2.118045 s, ? 0.039907
mozilla-try x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 0.089404 s, 0.007389 s, - 0.082015 s, ? 0.082647
mozilla-try x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 0.733043 s, 0.004868 s, - 0.728175 s, ? 0.006641
mozilla-try x000_revs_x000_added_x000_copies 1346fd0130e4 4c65cbdabc1f : 1.163367 s, 0.222450 s, - 0.940917 s, ? 0.191212
mozilla-try x0000_revs_x_added_0_copies 63519bfd42ee a36a2a865d92 : 0.085456 s, 0.370675 s, + 0.285219 s, ? 4.337612
mozilla-try x0000_revs_x_added_x_copies 9fe69ff0762d bcabf2a78927 : 0.083601 s, 0.358020 s, + 0.274419 s, ? 4.282485
mozilla-try x0000_revs_xx000_added_x_copies 156f6e2674f2 4d0f2c178e66 : 7.366614 s, 0.145235 s, - 7.221379 s, ? 0.019715
mozilla-try x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 6.664464 s, 0.037606 s, - 6.626858 s, ? 0.005643
mozilla-try x0000_revs_xx000_added_x000_copies 89294cd501d9 7ccb2fc7ccb5 : 7.467836 s, 7.382439 s, - 0.085397 s, ? 0.988565
mozilla-try x0000_revs_x0000_added_x0000_copies e928c65095ed e951f4ad123a : 9.801294 s, 7.273506 s, - 2.527788 s, ? 0.742097
mozilla-try x00000_revs_x_added_0_copies 6a320851d377 1ebb79acd503 : 0.091886 s, killed
mozilla-try x00000_revs_x00000_added_0_copies dc8a3ca7010e d16fde900c9c : 26.491140 s, 1.074593 s, -25.416547 s, ? 0.040564
mozilla-try x00000_revs_x_added_x_copies 5173c4b6f97c 95d83ee7242d : 0.092863 s, killed
mozilla-try x00000_revs_x000_added_x_copies 9126823d0e9c ca82787bb23c : 0.226823 s, killed
mozilla-try x00000_revs_x0000_added_x0000_copies 8d3fafa80d4b eb884023b810 : 18.914630 s, 27.746195 s, + 8.831565 s, ? 1.466917
mozilla-try x00000_revs_x00000_added_x0000_copies 1b661134e2ca 1ae03d022d6d : 21.198903 s, killed
mozilla-try x00000_revs_x00000_added_x000_copies 9b2a99adc05e 8e29777b48e6 : 24.952268 s, killed
Differential Revision: https://phab.mercurial-scm.org/D9296
author | Pierre-Yves David <pierre-yves.david@octobus.net> |
---|---|
date | Mon, 02 Nov 2020 11:03:56 +0100 |
parents | 26114bd6ec60 |
children | 0800aa42bb4c |
line wrap: on
line source
// Copyright 2018-2020 Georges Racinet <georges.racinet@octobus.net> // and Mercurial contributors // // This software may be used and distributed according to the terms of the // GNU General Public License version 2 or any later version. //! Indexing facilities for fast retrieval of `Revision` from `Node` //! //! This provides a variation on the 16-ary radix tree that is //! provided as "nodetree" in revlog.c, ready for append-only persistence //! on disk. //! //! Following existing implicit conventions, the "nodemap" terminology //! is used in a more abstract context. use super::{ node::NULL_NODE, Node, NodeError, NodePrefix, NodePrefixRef, Revision, RevlogIndex, NULL_REVISION, }; use std::cmp::max; use std::fmt; use std::mem; use std::ops::Deref; use std::ops::Index; use std::slice; #[derive(Debug, PartialEq)] pub enum NodeMapError { MultipleResults, InvalidNodePrefix(NodeError), /// A `Revision` stored in the nodemap could not be found in the index RevisionNotInIndex(Revision), } impl From<NodeError> for NodeMapError { fn from(err: NodeError) -> Self { NodeMapError::InvalidNodePrefix(err) } } /// Mapping system from Mercurial nodes to revision numbers. /// /// ## `RevlogIndex` and `NodeMap` /// /// One way to think about their relationship is that /// the `NodeMap` is a prefix-oriented reverse index of the `Node` information /// carried by a [`RevlogIndex`]. /// /// Many of the methods in this trait take a `RevlogIndex` argument /// which is used for validation of their results. This index must naturally /// be the one the `NodeMap` is about, and it must be consistent. /// /// Notably, the `NodeMap` must not store /// information about more `Revision` values than there are in the index. /// In these methods, an encountered `Revision` is not in the index, a /// [`RevisionNotInIndex`] error is returned. /// /// In insert operations, the rule is thus that the `NodeMap` must always /// be updated after the `RevlogIndex` /// be updated first, and the `NodeMap` second. /// /// [`RevisionNotInIndex`]: enum.NodeMapError.html#variant.RevisionNotInIndex /// [`RevlogIndex`]: ../trait.RevlogIndex.html pub trait NodeMap { /// Find the unique `Revision` having the given `Node` /// /// If no Revision matches the given `Node`, `Ok(None)` is returned. fn find_node( &self, index: &impl RevlogIndex, node: &Node, ) -> Result<Option<Revision>, NodeMapError> { self.find_bin(index, node.into()) } /// Find the unique Revision whose `Node` starts with a given binary prefix /// /// If no Revision matches the given prefix, `Ok(None)` is returned. /// /// If several Revisions match the given prefix, a [`MultipleResults`] /// error is returned. fn find_bin<'a>( &self, idx: &impl RevlogIndex, prefix: NodePrefixRef<'a>, ) -> Result<Option<Revision>, NodeMapError>; /// Find the unique Revision whose `Node` hexadecimal string representation /// starts with a given prefix /// /// If no Revision matches the given prefix, `Ok(None)` is returned. /// /// If several Revisions match the given prefix, a [`MultipleResults`] /// error is returned. fn find_hex( &self, idx: &impl RevlogIndex, prefix: &str, ) -> Result<Option<Revision>, NodeMapError> { self.find_bin(idx, NodePrefix::from_hex(prefix)?.borrow()) } /// Give the size of the shortest node prefix that determines /// the revision uniquely. /// /// From a binary node prefix, if it is matched in the node map, this /// returns the number of hexadecimal digits that would had sufficed /// to find the revision uniquely. /// /// Returns `None` if no `Revision` could be found for the prefix. /// /// If several Revisions match the given prefix, a [`MultipleResults`] /// error is returned. fn unique_prefix_len_bin<'a>( &self, idx: &impl RevlogIndex, node_prefix: NodePrefixRef<'a>, ) -> Result<Option<usize>, NodeMapError>; /// Same as `unique_prefix_len_bin`, with the hexadecimal representation /// of the prefix as input. fn unique_prefix_len_hex( &self, idx: &impl RevlogIndex, prefix: &str, ) -> Result<Option<usize>, NodeMapError> { self.unique_prefix_len_bin(idx, NodePrefix::from_hex(prefix)?.borrow()) } /// Same as `unique_prefix_len_bin`, with a full `Node` as input fn unique_prefix_len_node( &self, idx: &impl RevlogIndex, node: &Node, ) -> Result<Option<usize>, NodeMapError> { self.unique_prefix_len_bin(idx, node.into()) } } pub trait MutableNodeMap: NodeMap { fn insert<I: RevlogIndex>( &mut self, index: &I, node: &Node, rev: Revision, ) -> Result<(), NodeMapError>; } /// Low level NodeTree [`Blocks`] elements /// /// These are exactly as for instance on persistent storage. type RawElement = i32; /// High level representation of values in NodeTree /// [`Blocks`](struct.Block.html) /// /// This is the high level representation that most algorithms should /// use. #[derive(Clone, Debug, Eq, PartialEq)] enum Element { Rev(Revision), Block(usize), None, } impl From<RawElement> for Element { /// Conversion from low level representation, after endianness conversion. /// /// See [`Block`](struct.Block.html) for explanation about the encoding. fn from(raw: RawElement) -> Element { if raw >= 0 { Element::Block(raw as usize) } else if raw == -1 { Element::None } else { Element::Rev(-raw - 2) } } } impl From<Element> for RawElement { fn from(element: Element) -> RawElement { match element { Element::None => 0, Element::Block(i) => i as RawElement, Element::Rev(rev) => -rev - 2, } } } /// A logical block of the `NodeTree`, packed with a fixed size. /// /// These are always used in container types implementing `Index<Block>`, /// such as `&Block` /// /// As an array of integers, its ith element encodes that the /// ith potential edge from the block, representing the ith hexadecimal digit /// (nybble) `i` is either: /// /// - absent (value -1) /// - another `Block` in the same indexable container (value ≥ 0) /// - a `Revision` leaf (value ≤ -2) /// /// Endianness has to be fixed for consistency on shared storage across /// different architectures. /// /// A key difference with the C `nodetree` is that we need to be /// able to represent the [`Block`] at index 0, hence -1 is the empty marker /// rather than 0 and the `Revision` range upper limit of -2 instead of -1. /// /// Another related difference is that `NULL_REVISION` (-1) is not /// represented at all, because we want an immutable empty nodetree /// to be valid. #[derive(Copy, Clone)] pub struct Block([u8; BLOCK_SIZE]); /// Not derivable for arrays of length >32 until const generics are stable impl PartialEq for Block { fn eq(&self, other: &Self) -> bool { self.0[..] == other.0[..] } } pub const BLOCK_SIZE: usize = 64; impl Block { fn new() -> Self { // -1 in 2's complement to create an absent node let byte: u8 = 255; Block([byte; BLOCK_SIZE]) } fn get(&self, nybble: u8) -> Element { let index = nybble as usize * mem::size_of::<RawElement>(); Element::from(RawElement::from_be_bytes([ self.0[index], self.0[index + 1], self.0[index + 2], self.0[index + 3], ])) } fn set(&mut self, nybble: u8, element: Element) { let values = RawElement::to_be_bytes(element.into()); let index = nybble as usize * mem::size_of::<RawElement>(); self.0[index] = values[0]; self.0[index + 1] = values[1]; self.0[index + 2] = values[2]; self.0[index + 3] = values[3]; } } impl fmt::Debug for Block { /// sparse representation for testing and debugging purposes fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_map() .entries((0..16).filter_map(|i| match self.get(i) { Element::None => None, element => Some((i, element)), })) .finish() } } /// A mutable 16-radix tree with the root block logically at the end /// /// Because of the append only nature of our node trees, we need to /// keep the original untouched and store new blocks separately. /// /// The mutable root `Block` is kept apart so that we don't have to rebump /// it on each insertion. pub struct NodeTree { readonly: Box<dyn Deref<Target = [Block]> + Send>, growable: Vec<Block>, root: Block, masked_inner_blocks: usize, } impl Index<usize> for NodeTree { type Output = Block; fn index(&self, i: usize) -> &Block { let ro_len = self.readonly.len(); if i < ro_len { &self.readonly[i] } else if i == ro_len + self.growable.len() { &self.root } else { &self.growable[i - ro_len] } } } /// Return `None` unless the `Node` for `rev` has given prefix in `index`. fn has_prefix_or_none( idx: &impl RevlogIndex, prefix: NodePrefixRef, rev: Revision, ) -> Result<Option<Revision>, NodeMapError> { idx.node(rev) .ok_or_else(|| NodeMapError::RevisionNotInIndex(rev)) .map(|node| { if prefix.is_prefix_of(node) { Some(rev) } else { None } }) } /// validate that the candidate's node starts indeed with given prefix, /// and treat ambiguities related to `NULL_REVISION`. /// /// From the data in the NodeTree, one can only conclude that some /// revision is the only one for a *subprefix* of the one being looked up. fn validate_candidate( idx: &impl RevlogIndex, prefix: NodePrefixRef, candidate: (Option<Revision>, usize), ) -> Result<(Option<Revision>, usize), NodeMapError> { let (rev, steps) = candidate; if let Some(nz_nybble) = prefix.first_different_nybble(&NULL_NODE) { rev.map_or(Ok((None, steps)), |r| { has_prefix_or_none(idx, prefix, r) .map(|opt| (opt, max(steps, nz_nybble + 1))) }) } else { // the prefix is only made of zeros; NULL_REVISION always matches it // and any other *valid* result is an ambiguity match rev { None => Ok((Some(NULL_REVISION), steps + 1)), Some(r) => match has_prefix_or_none(idx, prefix, r)? { None => Ok((Some(NULL_REVISION), steps + 1)), _ => Err(NodeMapError::MultipleResults), }, } } } impl NodeTree { /// Initiate a NodeTree from an immutable slice-like of `Block` /// /// We keep `readonly` and clone its root block if it isn't empty. fn new(readonly: Box<dyn Deref<Target = [Block]> + Send>) -> Self { let root = readonly.last().cloned().unwrap_or_else(Block::new); NodeTree { readonly, growable: Vec::new(), root, masked_inner_blocks: 0, } } /// Create from an opaque bunch of bytes /// /// The created `NodeTreeBytes` from `buffer`, /// of which exactly `amount` bytes are used. /// /// - `buffer` could be derived from `PyBuffer` and `Mmap` objects. /// - `offset` allows for the final file format to include fixed data /// (generation number, behavioural flags) /// - `amount` is expressed in bytes, and is not automatically derived from /// `bytes`, so that a caller that manages them atomically can perform /// temporary disk serializations and still rollback easily if needed. /// First use-case for this would be to support Mercurial shell hooks. /// /// panics if `buffer` is smaller than `amount` pub fn load_bytes( bytes: Box<dyn Deref<Target = [u8]> + Send>, amount: usize, ) -> Self { NodeTree::new(Box::new(NodeTreeBytes::new(bytes, amount))) } /// Retrieve added `Block` and the original immutable data pub fn into_readonly_and_added( self, ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<Block>) { let mut vec = self.growable; let readonly = self.readonly; if readonly.last() != Some(&self.root) { vec.push(self.root); } (readonly, vec) } /// Retrieve added `Blocks` as bytes, ready to be written to persistent /// storage pub fn into_readonly_and_added_bytes( self, ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<u8>) { let (readonly, vec) = self.into_readonly_and_added(); // Prevent running `v`'s destructor so we are in complete control // of the allocation. let vec = mem::ManuallyDrop::new(vec); // Transmute the `Vec<Block>` to a `Vec<u8>`. Blocks are contiguous // bytes, so this is perfectly safe. let bytes = unsafe { // Assert that `Block` hasn't been changed and has no padding let _: [u8; 4 * BLOCK_SIZE] = std::mem::transmute([Block::new(); 4]); // /!\ Any use of `vec` after this is use-after-free. // TODO: use `into_raw_parts` once stabilized Vec::from_raw_parts( vec.as_ptr() as *mut u8, vec.len() * BLOCK_SIZE, vec.capacity() * BLOCK_SIZE, ) }; (readonly, bytes) } /// Total number of blocks fn len(&self) -> usize { self.readonly.len() + self.growable.len() + 1 } /// Implemented for completeness /// /// A `NodeTree` always has at least the mutable root block. #[allow(dead_code)] fn is_empty(&self) -> bool { false } /// Main working method for `NodeTree` searches /// /// The first returned value is the result of analysing `NodeTree` data /// *alone*: whereas `None` guarantees that the given prefix is absent /// from the `NodeTree` data (but still could match `NULL_NODE`), with /// `Some(rev)`, it is to be understood that `rev` is the unique `Revision` /// that could match the prefix. Actually, all that can be inferred from /// the `NodeTree` data is that `rev` is the revision with the longest /// common node prefix with the given prefix. /// /// The second returned value is the size of the smallest subprefix /// of `prefix` that would give the same result, i.e. not the /// `MultipleResults` error variant (again, using only the data of the /// `NodeTree`). fn lookup( &self, prefix: NodePrefixRef, ) -> Result<(Option<Revision>, usize), NodeMapError> { for (i, visit_item) in self.visit(prefix).enumerate() { if let Some(opt) = visit_item.final_revision() { return Ok((opt, i + 1)); } } Err(NodeMapError::MultipleResults) } fn visit<'n, 'p>( &'n self, prefix: NodePrefixRef<'p>, ) -> NodeTreeVisitor<'n, 'p> { NodeTreeVisitor { nt: self, prefix, visit: self.len() - 1, nybble_idx: 0, done: false, } } /// Return a mutable reference for `Block` at index `idx`. /// /// If `idx` lies in the immutable area, then the reference is to /// a newly appended copy. /// /// Returns (new_idx, glen, mut_ref) where /// /// - `new_idx` is the index of the mutable `Block` /// - `mut_ref` is a mutable reference to the mutable Block. /// - `glen` is the new length of `self.growable` /// /// Note: the caller wouldn't be allowed to query `self.growable.len()` /// itself because of the mutable borrow taken with the returned `Block` fn mutable_block(&mut self, idx: usize) -> (usize, &mut Block, usize) { let ro_blocks = &self.readonly; let ro_len = ro_blocks.len(); let glen = self.growable.len(); if idx < ro_len { self.masked_inner_blocks += 1; self.growable.push(ro_blocks[idx]); (glen + ro_len, &mut self.growable[glen], glen + 1) } else if glen + ro_len == idx { (idx, &mut self.root, glen) } else { (idx, &mut self.growable[idx - ro_len], glen) } } /// Main insertion method /// /// This will dive in the node tree to find the deepest `Block` for /// `node`, split it as much as needed and record `node` in there. /// The method then backtracks, updating references in all the visited /// blocks from the root. /// /// All the mutated `Block` are copied first to the growable part if /// needed. That happens for those in the immutable part except the root. pub fn insert<I: RevlogIndex>( &mut self, index: &I, node: &Node, rev: Revision, ) -> Result<(), NodeMapError> { let ro_len = &self.readonly.len(); let mut visit_steps: Vec<_> = self.visit(node.into()).collect(); let read_nybbles = visit_steps.len(); // visit_steps cannot be empty, since we always visit the root block let deepest = visit_steps.pop().unwrap(); let (mut block_idx, mut block, mut glen) = self.mutable_block(deepest.block_idx); if let Element::Rev(old_rev) = deepest.element { let old_node = index .node(old_rev) .ok_or_else(|| NodeMapError::RevisionNotInIndex(old_rev))?; if old_node == node { return Ok(()); // avoid creating lots of useless blocks } // Looping over the tail of nybbles in both nodes, creating // new blocks until we find the difference let mut new_block_idx = ro_len + glen; let mut nybble = deepest.nybble; for nybble_pos in read_nybbles..node.nybbles_len() { block.set(nybble, Element::Block(new_block_idx)); let new_nybble = node.get_nybble(nybble_pos); let old_nybble = old_node.get_nybble(nybble_pos); if old_nybble == new_nybble { self.growable.push(Block::new()); block = &mut self.growable[glen]; glen += 1; new_block_idx += 1; nybble = new_nybble; } else { let mut new_block = Block::new(); new_block.set(old_nybble, Element::Rev(old_rev)); new_block.set(new_nybble, Element::Rev(rev)); self.growable.push(new_block); break; } } } else { // Free slot in the deepest block: no splitting has to be done block.set(deepest.nybble, Element::Rev(rev)); } // Backtrack over visit steps to update references while let Some(visited) = visit_steps.pop() { let to_write = Element::Block(block_idx); if visit_steps.is_empty() { self.root.set(visited.nybble, to_write); break; } let (new_idx, block, _) = self.mutable_block(visited.block_idx); if block.get(visited.nybble) == to_write { break; } block.set(visited.nybble, to_write); block_idx = new_idx; } Ok(()) } /// Make the whole `NodeTree` logically empty, without touching the /// immutable part. pub fn invalidate_all(&mut self) { self.root = Block::new(); self.growable = Vec::new(); self.masked_inner_blocks = self.readonly.len(); } /// Return the number of blocks in the readonly part that are currently /// masked in the mutable part. /// /// The `NodeTree` structure has no efficient way to know how many blocks /// are already unreachable in the readonly part. /// /// After a call to `invalidate_all()`, the returned number can be actually /// bigger than the whole readonly part, a conventional way to mean that /// all the readonly blocks have been masked. This is what is really /// useful to the caller and does not require to know how many were /// actually unreachable to begin with. pub fn masked_readonly_blocks(&self) -> usize { if let Some(readonly_root) = self.readonly.last() { if readonly_root == &self.root { return 0; } } else { return 0; } self.masked_inner_blocks + 1 } } pub struct NodeTreeBytes { buffer: Box<dyn Deref<Target = [u8]> + Send>, len_in_blocks: usize, } impl NodeTreeBytes { fn new( buffer: Box<dyn Deref<Target = [u8]> + Send>, amount: usize, ) -> Self { assert!(buffer.len() >= amount); let len_in_blocks = amount / BLOCK_SIZE; NodeTreeBytes { buffer, len_in_blocks, } } } impl Deref for NodeTreeBytes { type Target = [Block]; fn deref(&self) -> &[Block] { unsafe { slice::from_raw_parts( (&self.buffer).as_ptr() as *const Block, self.len_in_blocks, ) } } } struct NodeTreeVisitor<'n, 'p> { nt: &'n NodeTree, prefix: NodePrefixRef<'p>, visit: usize, nybble_idx: usize, done: bool, } #[derive(Debug, PartialEq, Clone)] struct NodeTreeVisitItem { block_idx: usize, nybble: u8, element: Element, } impl<'n, 'p> Iterator for NodeTreeVisitor<'n, 'p> { type Item = NodeTreeVisitItem; fn next(&mut self) -> Option<Self::Item> { if self.done || self.nybble_idx >= self.prefix.len() { return None; } let nybble = self.prefix.get_nybble(self.nybble_idx); self.nybble_idx += 1; let visit = self.visit; let element = self.nt[visit].get(nybble); if let Element::Block(idx) = element { self.visit = idx; } else { self.done = true; } Some(NodeTreeVisitItem { block_idx: visit, nybble, element, }) } } impl NodeTreeVisitItem { // Return `Some(opt)` if this item is final, with `opt` being the // `Revision` that it may represent. // // If the item is not terminal, return `None` fn final_revision(&self) -> Option<Option<Revision>> { match self.element { Element::Block(_) => None, Element::Rev(r) => Some(Some(r)), Element::None => Some(None), } } } impl From<Vec<Block>> for NodeTree { fn from(vec: Vec<Block>) -> Self { Self::new(Box::new(vec)) } } impl fmt::Debug for NodeTree { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let readonly: &[Block] = &*self.readonly; write!( f, "readonly: {:?}, growable: {:?}, root: {:?}", readonly, self.growable, self.root ) } } impl Default for NodeTree { /// Create a fully mutable empty NodeTree fn default() -> Self { NodeTree::new(Box::new(Vec::new())) } } impl NodeMap for NodeTree { fn find_bin<'a>( &self, idx: &impl RevlogIndex, prefix: NodePrefixRef<'a>, ) -> Result<Option<Revision>, NodeMapError> { validate_candidate(idx, prefix.clone(), self.lookup(prefix)?) .map(|(opt, _shortest)| opt) } fn unique_prefix_len_bin<'a>( &self, idx: &impl RevlogIndex, prefix: NodePrefixRef<'a>, ) -> Result<Option<usize>, NodeMapError> { validate_candidate(idx, prefix.clone(), self.lookup(prefix)?) .map(|(opt, shortest)| opt.map(|_rev| shortest)) } } #[cfg(test)] mod tests { use super::NodeMapError::*; use super::*; use crate::revlog::node::{hex_pad_right, Node}; use std::collections::HashMap; /// Creates a `Block` using a syntax close to the `Debug` output macro_rules! block { {$($nybble:tt : $variant:ident($val:tt)),*} => ( { let mut block = Block::new(); $(block.set($nybble, Element::$variant($val)));*; block } ) } #[test] fn test_block_debug() { let mut block = Block::new(); block.set(1, Element::Rev(3)); block.set(10, Element::Block(0)); assert_eq!(format!("{:?}", block), "{1: Rev(3), 10: Block(0)}"); } #[test] fn test_block_macro() { let block = block! {5: Block(2)}; assert_eq!(format!("{:?}", block), "{5: Block(2)}"); let block = block! {13: Rev(15), 5: Block(2)}; assert_eq!(format!("{:?}", block), "{5: Block(2), 13: Rev(15)}"); } #[test] fn test_raw_block() { let mut raw = [255u8; 64]; let mut counter = 0; for val in [0, 15, -2, -1, -3].iter() { for byte in RawElement::to_be_bytes(*val).iter() { raw[counter] = *byte; counter += 1; } } let block = Block(raw); assert_eq!(block.get(0), Element::Block(0)); assert_eq!(block.get(1), Element::Block(15)); assert_eq!(block.get(3), Element::None); assert_eq!(block.get(2), Element::Rev(0)); assert_eq!(block.get(4), Element::Rev(1)); } type TestIndex = HashMap<Revision, Node>; impl RevlogIndex for TestIndex { fn node(&self, rev: Revision) -> Option<&Node> { self.get(&rev) } fn len(&self) -> usize { self.len() } } /// Pad hexadecimal Node prefix with zeros on the right /// /// This avoids having to repeatedly write very long hexadecimal /// strings for test data, and brings actual hash size independency. #[cfg(test)] fn pad_node(hex: &str) -> Node { Node::from_hex(&hex_pad_right(hex)).unwrap() } /// Pad hexadecimal Node prefix with zeros on the right, then insert fn pad_insert(idx: &mut TestIndex, rev: Revision, hex: &str) { idx.insert(rev, pad_node(hex)); } fn sample_nodetree() -> NodeTree { NodeTree::from(vec![ block![0: Rev(9)], block![0: Rev(0), 1: Rev(9)], block![0: Block(1), 1:Rev(1)], ]) } #[test] fn test_nt_debug() { let nt = sample_nodetree(); assert_eq!( format!("{:?}", nt), "readonly: \ [{0: Rev(9)}, {0: Rev(0), 1: Rev(9)}, {0: Block(1), 1: Rev(1)}], \ growable: [], \ root: {0: Block(1), 1: Rev(1)}", ); } #[test] fn test_immutable_find_simplest() -> Result<(), NodeMapError> { let mut idx: TestIndex = HashMap::new(); pad_insert(&mut idx, 1, "1234deadcafe"); let nt = NodeTree::from(vec![block! {1: Rev(1)}]); assert_eq!(nt.find_hex(&idx, "1")?, Some(1)); assert_eq!(nt.find_hex(&idx, "12")?, Some(1)); assert_eq!(nt.find_hex(&idx, "1234de")?, Some(1)); assert_eq!(nt.find_hex(&idx, "1a")?, None); assert_eq!(nt.find_hex(&idx, "ab")?, None); // and with full binary Nodes assert_eq!(nt.find_node(&idx, idx.get(&1).unwrap())?, Some(1)); let unknown = Node::from_hex(&hex_pad_right("3d")).unwrap(); assert_eq!(nt.find_node(&idx, &unknown)?, None); Ok(()) } #[test] fn test_immutable_find_one_jump() { let mut idx = TestIndex::new(); pad_insert(&mut idx, 9, "012"); pad_insert(&mut idx, 0, "00a"); let nt = sample_nodetree(); assert_eq!(nt.find_hex(&idx, "0"), Err(MultipleResults)); assert_eq!(nt.find_hex(&idx, "01"), Ok(Some(9))); assert_eq!(nt.find_hex(&idx, "00"), Err(MultipleResults)); assert_eq!(nt.find_hex(&idx, "00a"), Ok(Some(0))); assert_eq!(nt.unique_prefix_len_hex(&idx, "00a"), Ok(Some(3))); assert_eq!(nt.find_hex(&idx, "000"), Ok(Some(NULL_REVISION))); } #[test] fn test_mutated_find() -> Result<(), NodeMapError> { let mut idx = TestIndex::new(); pad_insert(&mut idx, 9, "012"); pad_insert(&mut idx, 0, "00a"); pad_insert(&mut idx, 2, "cafe"); pad_insert(&mut idx, 3, "15"); pad_insert(&mut idx, 1, "10"); let nt = NodeTree { readonly: sample_nodetree().readonly, growable: vec![block![0: Rev(1), 5: Rev(3)]], root: block![0: Block(1), 1:Block(3), 12: Rev(2)], masked_inner_blocks: 1, }; assert_eq!(nt.find_hex(&idx, "10")?, Some(1)); assert_eq!(nt.find_hex(&idx, "c")?, Some(2)); assert_eq!(nt.unique_prefix_len_hex(&idx, "c")?, Some(1)); assert_eq!(nt.find_hex(&idx, "00"), Err(MultipleResults)); assert_eq!(nt.find_hex(&idx, "000")?, Some(NULL_REVISION)); assert_eq!(nt.unique_prefix_len_hex(&idx, "000")?, Some(3)); assert_eq!(nt.find_hex(&idx, "01")?, Some(9)); assert_eq!(nt.masked_readonly_blocks(), 2); Ok(()) } struct TestNtIndex { index: TestIndex, nt: NodeTree, } impl TestNtIndex { fn new() -> Self { TestNtIndex { index: HashMap::new(), nt: NodeTree::default(), } } fn insert( &mut self, rev: Revision, hex: &str, ) -> Result<(), NodeMapError> { let node = pad_node(hex); self.index.insert(rev, node.clone()); self.nt.insert(&self.index, &node, rev)?; Ok(()) } fn find_hex( &self, prefix: &str, ) -> Result<Option<Revision>, NodeMapError> { self.nt.find_hex(&self.index, prefix) } fn unique_prefix_len_hex( &self, prefix: &str, ) -> Result<Option<usize>, NodeMapError> { self.nt.unique_prefix_len_hex(&self.index, prefix) } /// Drain `added` and restart a new one fn commit(self) -> Self { let mut as_vec: Vec<Block> = self.nt.readonly.iter().map(|block| block.clone()).collect(); as_vec.extend(self.nt.growable); as_vec.push(self.nt.root); Self { index: self.index, nt: NodeTree::from(as_vec).into(), } } } #[test] fn test_insert_full_mutable() -> Result<(), NodeMapError> { let mut idx = TestNtIndex::new(); idx.insert(0, "1234")?; assert_eq!(idx.find_hex("1")?, Some(0)); assert_eq!(idx.find_hex("12")?, Some(0)); // let's trigger a simple split idx.insert(1, "1a34")?; assert_eq!(idx.nt.growable.len(), 1); assert_eq!(idx.find_hex("12")?, Some(0)); assert_eq!(idx.find_hex("1a")?, Some(1)); // reinserting is a no_op idx.insert(1, "1a34")?; assert_eq!(idx.nt.growable.len(), 1); assert_eq!(idx.find_hex("12")?, Some(0)); assert_eq!(idx.find_hex("1a")?, Some(1)); idx.insert(2, "1a01")?; assert_eq!(idx.nt.growable.len(), 2); assert_eq!(idx.find_hex("1a"), Err(NodeMapError::MultipleResults)); assert_eq!(idx.find_hex("12")?, Some(0)); assert_eq!(idx.find_hex("1a3")?, Some(1)); assert_eq!(idx.find_hex("1a0")?, Some(2)); assert_eq!(idx.find_hex("1a12")?, None); // now let's make it split and create more than one additional block idx.insert(3, "1a345")?; assert_eq!(idx.nt.growable.len(), 4); assert_eq!(idx.find_hex("1a340")?, Some(1)); assert_eq!(idx.find_hex("1a345")?, Some(3)); assert_eq!(idx.find_hex("1a341")?, None); // there's no readonly block to mask assert_eq!(idx.nt.masked_readonly_blocks(), 0); Ok(()) } #[test] fn test_unique_prefix_len_zero_prefix() { let mut idx = TestNtIndex::new(); idx.insert(0, "00000abcd").unwrap(); assert_eq!(idx.find_hex("000"), Err(NodeMapError::MultipleResults)); // in the nodetree proper, this will be found at the first nybble // yet the correct answer for unique_prefix_len is not 1, nor 1+1, // but the first difference with `NULL_NODE` assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6))); assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6))); // same with odd result idx.insert(1, "00123").unwrap(); assert_eq!(idx.unique_prefix_len_hex("001"), Ok(Some(3))); assert_eq!(idx.unique_prefix_len_hex("0012"), Ok(Some(3))); // these are unchanged of course assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6))); assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6))); } #[test] fn test_insert_extreme_splitting() -> Result<(), NodeMapError> { // check that the splitting loop is long enough let mut nt_idx = TestNtIndex::new(); let nt = &mut nt_idx.nt; let idx = &mut nt_idx.index; let node0_hex = hex_pad_right("444444"); let mut node1_hex = hex_pad_right("444444").clone(); node1_hex.pop(); node1_hex.push('5'); let node0 = Node::from_hex(&node0_hex).unwrap(); let node1 = Node::from_hex(&node1_hex).unwrap(); idx.insert(0, node0.clone()); nt.insert(idx, &node0, 0)?; idx.insert(1, node1.clone()); nt.insert(idx, &node1, 1)?; assert_eq!(nt.find_bin(idx, (&node0).into())?, Some(0)); assert_eq!(nt.find_bin(idx, (&node1).into())?, Some(1)); Ok(()) } #[test] fn test_insert_partly_immutable() -> Result<(), NodeMapError> { let mut idx = TestNtIndex::new(); idx.insert(0, "1234")?; idx.insert(1, "1235")?; idx.insert(2, "131")?; idx.insert(3, "cafe")?; let mut idx = idx.commit(); assert_eq!(idx.find_hex("1234")?, Some(0)); assert_eq!(idx.find_hex("1235")?, Some(1)); assert_eq!(idx.find_hex("131")?, Some(2)); assert_eq!(idx.find_hex("cafe")?, Some(3)); // we did not add anything since init from readonly assert_eq!(idx.nt.masked_readonly_blocks(), 0); idx.insert(4, "123A")?; assert_eq!(idx.find_hex("1234")?, Some(0)); assert_eq!(idx.find_hex("1235")?, Some(1)); assert_eq!(idx.find_hex("131")?, Some(2)); assert_eq!(idx.find_hex("cafe")?, Some(3)); assert_eq!(idx.find_hex("123A")?, Some(4)); // we masked blocks for all prefixes of "123", including the root assert_eq!(idx.nt.masked_readonly_blocks(), 4); eprintln!("{:?}", idx.nt); idx.insert(5, "c0")?; assert_eq!(idx.find_hex("cafe")?, Some(3)); assert_eq!(idx.find_hex("c0")?, Some(5)); assert_eq!(idx.find_hex("c1")?, None); assert_eq!(idx.find_hex("1234")?, Some(0)); // inserting "c0" is just splitting the 'c' slot of the mutable root, // it doesn't mask anything assert_eq!(idx.nt.masked_readonly_blocks(), 4); Ok(()) } #[test] fn test_invalidate_all() -> Result<(), NodeMapError> { let mut idx = TestNtIndex::new(); idx.insert(0, "1234")?; idx.insert(1, "1235")?; idx.insert(2, "131")?; idx.insert(3, "cafe")?; let mut idx = idx.commit(); idx.nt.invalidate_all(); assert_eq!(idx.find_hex("1234")?, None); assert_eq!(idx.find_hex("1235")?, None); assert_eq!(idx.find_hex("131")?, None); assert_eq!(idx.find_hex("cafe")?, None); // all the readonly blocks have been masked, this is the // conventional expected response assert_eq!(idx.nt.masked_readonly_blocks(), idx.nt.readonly.len() + 1); Ok(()) } #[test] fn test_into_added_empty() { assert!(sample_nodetree().into_readonly_and_added().1.is_empty()); assert!(sample_nodetree() .into_readonly_and_added_bytes() .1 .is_empty()); } #[test] fn test_into_added_bytes() -> Result<(), NodeMapError> { let mut idx = TestNtIndex::new(); idx.insert(0, "1234")?; let mut idx = idx.commit(); idx.insert(4, "cafe")?; let (_, bytes) = idx.nt.into_readonly_and_added_bytes(); // only the root block has been changed assert_eq!(bytes.len(), BLOCK_SIZE); // big endian for -2 assert_eq!(&bytes[4..2 * 4], [255, 255, 255, 254]); // big endian for -6 assert_eq!(&bytes[12 * 4..13 * 4], [255, 255, 255, 250]); Ok(()) } }