view mercurial/profiling.py @ 32803:4483696dacee

profile: upgrade the "profile" context manager to a full class So far we have been able to use a simple decorator for this. However using the current context manager makes the scope of the profiling in dispatch constrainted and the time frame to decide to enable profiling quite limited (using "maybeprofile") This is the first step toward the ability to enable the profiling from within the profiling scope. eg:: with maybeprofiling(ui) as profiler: ... bar.foo(): ... if options['profile']: profiler.start() ... fooz() ... My target usecase is adding support for "--profile" to alias definitions with effect. These are to be used with "profiling.output=blackbox" to gather data about operation that get slow from time to time (eg: pull being minutes instead of seconds from time to time). Of course, in such case, the scope of the profiling would be smaller since profiler would be started after running extensions 'reposetup' (and other potentially costly logic), but these are not relevant for my target usecase (multiple second commits, multiple tens of seconds pull). Currently adding '--profile' to a command through alias requires to re-spin a Mercurial binary (using "!$HG" in alias), which as a significant performance impact, especially in context where startup performance is being worked on... An alternative approach would be to stop using the context manager in dispatch and move back to a try/finally setup.
author Pierre-Yves David <pierre-yves.david@octobus.net>
date Thu, 08 Jun 2017 01:38:48 +0100
parents f40dc6f7c12f
children 086c1ef0f666
line wrap: on
line source

# profiling.py - profiling functions
#
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import, print_function

import contextlib

from .i18n import _
from . import (
    encoding,
    error,
    extensions,
    util,
)

def _loadprofiler(ui, profiler):
    """load profiler extension. return profile method, or None on failure"""
    extname = profiler
    extensions.loadall(ui, whitelist=[extname])
    try:
        mod = extensions.find(extname)
    except KeyError:
        return None
    else:
        return getattr(mod, 'profile', None)

@contextlib.contextmanager
def lsprofile(ui, fp):
    format = ui.config('profiling', 'format', default='text')
    field = ui.config('profiling', 'sort', default='inlinetime')
    limit = ui.configint('profiling', 'limit', default=30)
    climit = ui.configint('profiling', 'nested', default=0)

    if format not in ['text', 'kcachegrind']:
        ui.warn(_("unrecognized profiling format '%s'"
                    " - Ignored\n") % format)
        format = 'text'

    try:
        from . import lsprof
    except ImportError:
        raise error.Abort(_(
            'lsprof not available - install from '
            'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
    p = lsprof.Profiler()
    p.enable(subcalls=True)
    try:
        yield
    finally:
        p.disable()

        if format == 'kcachegrind':
            from . import lsprofcalltree
            calltree = lsprofcalltree.KCacheGrind(p)
            calltree.output(fp)
        else:
            # format == 'text'
            stats = lsprof.Stats(p.getstats())
            stats.sort(field)
            stats.pprint(limit=limit, file=fp, climit=climit)

@contextlib.contextmanager
def flameprofile(ui, fp):
    try:
        from flamegraph import flamegraph
    except ImportError:
        raise error.Abort(_(
            'flamegraph not available - install from '
            'https://github.com/evanhempel/python-flamegraph'))
    # developer config: profiling.freq
    freq = ui.configint('profiling', 'freq', default=1000)
    filter_ = None
    collapse_recursion = True
    thread = flamegraph.ProfileThread(fp, 1.0 / freq,
                                      filter_, collapse_recursion)
    start_time = util.timer()
    try:
        thread.start()
        yield
    finally:
        thread.stop()
        thread.join()
        print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
            util.timer() - start_time, thread.num_frames(),
            thread.num_frames(unique=True)))

@contextlib.contextmanager
def statprofile(ui, fp):
    from . import statprof

    freq = ui.configint('profiling', 'freq', default=1000)
    if freq > 0:
        # Cannot reset when profiler is already active. So silently no-op.
        if statprof.state.profile_level == 0:
            statprof.reset(freq)
    else:
        ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)

    statprof.start(mechanism='thread')

    try:
        yield
    finally:
        data = statprof.stop()

        profformat = ui.config('profiling', 'statformat', 'hotpath')

        formats = {
            'byline': statprof.DisplayFormats.ByLine,
            'bymethod': statprof.DisplayFormats.ByMethod,
            'hotpath': statprof.DisplayFormats.Hotpath,
            'json': statprof.DisplayFormats.Json,
            'chrome': statprof.DisplayFormats.Chrome,
        }

        if profformat in formats:
            displayformat = formats[profformat]
        else:
            ui.warn(_('unknown profiler output format: %s\n') % profformat)
            displayformat = statprof.DisplayFormats.Hotpath

        kwargs = {}

        def fraction(s):
            if s.endswith('%'):
                v = float(s[:-1]) / 100
            else:
                v = float(s)
            if 0 <= v <= 1:
                return v
            raise ValueError(s)

        if profformat == 'chrome':
            showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005)
            showmax = ui.configwith(fraction, 'profiling', 'showmax', 0.999)
            kwargs.update(minthreshold=showmin, maxthreshold=showmax)

        statprof.display(fp, data=data, format=displayformat, **kwargs)

class profile(object):
    """Start profiling.

    Profiling is active when the context manager is active. When the context
    manager exits, profiling results will be written to the configured output.
    """
    def __init__(self, ui):
        self._ui = ui
        self._output = None
        self._fp = None
        self._profiler = None

    def __enter__(self):
        profiler = encoding.environ.get('HGPROF')
        proffn = None
        if profiler is None:
            profiler = self._ui.config('profiling', 'type', default='stat')
        if profiler not in ('ls', 'stat', 'flame'):
            # try load profiler from extension with the same name
            proffn = _loadprofiler(self._ui, profiler)
            if proffn is None:
                self._ui.warn(_("unrecognized profiler '%s' - ignored\n")
                              % profiler)
                profiler = 'stat'

        self._output = self._ui.config('profiling', 'output')

        if self._output == 'blackbox':
            self._fp = util.stringio()
        elif self._output:
            path = self._ui.expandpath(self._output)
            self._fp = open(path, 'wb')
        else:
            self._fp = self._ui.ferr

        if proffn is not None:
            pass
        elif profiler == 'ls':
            proffn = lsprofile
        elif profiler == 'flame':
            proffn = flameprofile
        else:
            proffn = statprofile

        self._profiler = proffn(self._ui, self._fp)
        self._profiler.__enter__()

    def __exit__(self, exception_type, exception_value, traceback):
        if self._profiler is None:
            return
        self._profiler.__exit__(exception_type, exception_value, traceback)
        if self._output:
            if self._output == 'blackbox':
                val = 'Profile:\n%s' % self._fp.getvalue()
                # ui.log treats the input as a format string,
                # so we need to escape any % signs.
                val = val.replace('%', '%%')
                self._ui.log('profile', val)
            self._fp.close()

@contextlib.contextmanager
def maybeprofile(ui):
    """Profile if enabled, else do nothing.

    This context manager can be used to optionally profile if profiling
    is enabled. Otherwise, it does nothing.

    The purpose of this context manager is to make calling code simpler:
    just use a single code path for calling into code you may want to profile
    and this function determines whether to start profiling.
    """
    if ui.configbool('profiling', 'enabled'):
        with profile(ui):
            yield
    else:
        yield