Mercurial > public > mercurial-scm > hg-stable
view contrib/python-zstandard/zstd/common/threading.c @ 37495:b1fb341d8a61
zstandard: vendor python-zstandard 0.9.0
This was just released. It features a number of goodies. More info at
https://gregoryszorc.com/blog/2018/04/09/release-of-python-zstandard-0.9/.
The clang-format ignore list was updated to reflect the new source
of files.
The project contains a vendored copy of zstandard 1.3.4. The old
version was 1.1.3. One of the changes between those versions is that
zstandard is now dual licensed BSD + GPLv2 and the patent rights grant
has been removed. Good riddance.
The API should be backwards compatible. So no changes in core
should be needed. However, there were a number of changes in the
library that we'll want to adapt to. Those will be addressed in
subsequent commits.
Differential Revision: https://phab.mercurial-scm.org/D3198
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Mon, 09 Apr 2018 10:13:29 -0700 |
parents | c32454d69b85 |
children | 69de49c4e39c |
line wrap: on
line source
/** * Copyright (c) 2016 Tino Reichardt * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * * You can contact the author at: * - zstdmt source repository: https://github.com/mcmilk/zstdmt */ /** * This file will hold wrapper for systems, which do not support pthreads */ /* create fake symbol to avoid empty trnaslation unit warning */ int g_ZSTD_threading_useles_symbol; #if defined(ZSTD_MULTITHREAD) && defined(_WIN32) /** * Windows minimalist Pthread Wrapper, based on : * http://www.cse.wustl.edu/~schmidt/win32-cv-1.html */ /* === Dependencies === */ #include <process.h> #include <errno.h> #include "threading.h" /* === Implementation === */ static unsigned __stdcall worker(void *arg) { ZSTD_pthread_t* const thread = (ZSTD_pthread_t*) arg; thread->arg = thread->start_routine(thread->arg); return 0; } int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused, void* (*start_routine) (void*), void* arg) { (void)unused; thread->arg = arg; thread->start_routine = start_routine; thread->handle = (HANDLE) _beginthreadex(NULL, 0, worker, thread, 0, NULL); if (!thread->handle) return errno; else return 0; } int ZSTD_pthread_join(ZSTD_pthread_t thread, void **value_ptr) { DWORD result; if (!thread.handle) return 0; result = WaitForSingleObject(thread.handle, INFINITE); switch (result) { case WAIT_OBJECT_0: if (value_ptr) *value_ptr = thread.arg; return 0; case WAIT_ABANDONED: return EINVAL; default: return GetLastError(); } } #endif /* ZSTD_MULTITHREAD */