--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/mercurial/stabletailgraph/stabletailsort.py Thu Mar 30 22:22:44 2023 +0200
@@ -0,0 +1,110 @@
+# stabletailsort.py - stable ordering of revisions
+#
+# Copyright 2021-2023 Pacien TRAN-GIRARD <pacien.trangirard@pacien.net>
+#
+# This software may be used and distributed according to the terms of the
+# GNU General Public License version 2 or any later version.
+
+"""
+Stable-tail sort computation.
+
+The "stable-tail sort", or STS, is a reverse topological ordering of the
+ancestors of a node, which tends to share large suffixes with the stable-tail
+sort of ancestors and other nodes, giving it its name.
+
+Its properties should make it suitable for making chunks of ancestors with high
+reuse and incrementality for example.
+
+This module and implementation are experimental. Most functions are not yet
+optimised to operate on large production graphs.
+"""
+
+import itertools
+from ..node import nullrev
+from .. import ancestor
+
+
+def _sorted_parents(cl, p1, p2):
+ """
+ Chooses and returns the pair (px, pt) from (p1, p2).
+
+ Where
+ "px" denotes the parent starting the "exclusive" part, and
+ "pt" denotes the parent starting the "Tail" part.
+
+ "px" is chosen as the parent with the lowest rank with the goal of
+ minimising the size of the exclusive part and maximise the size of the
+ tail part, hopefully reducing the overall complexity of the stable sort.
+
+ In case of equal ranks, the stable node ID is used as a tie-breaker.
+ """
+ r1, r2 = cl.fast_rank(p1), cl.fast_rank(p2)
+ if r1 < r2:
+ return (p1, p2)
+ elif r1 > r2:
+ return (p2, p1)
+ elif cl.node(p1) < cl.node(p2):
+ return (p1, p2)
+ else:
+ return (p2, p1)
+
+
+def _nonoedipal_parent_revs(cl, rev):
+ """
+ Returns the non-œdipal parent pair of the given revision.
+
+ An œdipal merge is a merge with parents p1, p2 with either
+ p1 in ancestors(p2) or p2 in ancestors(p1).
+ In the first case, p1 is the œdipal parent.
+ In the second case, p2 is the œdipal parent.
+
+ Œdipal edges start empty exclusive parts. They do not bring new ancestors.
+ As such, they can be skipped when computing any topological sort or any
+ iteration over the ancestors of a node.
+
+ The œdipal edges are eliminated here using the rank information.
+ """
+ p1, p2 = cl.parentrevs(rev)
+ if p1 == nullrev or cl.fast_rank(p2) == cl.fast_rank(rev) - 1:
+ return p2, nullrev
+ elif p2 == nullrev or cl.fast_rank(p1) == cl.fast_rank(rev) - 1:
+ return p1, nullrev
+ else:
+ return p1, p2
+
+
+def _stable_tail_sort(cl, head_rev):
+ """
+ Naive topological iterator of the ancestors given by the stable-tail sort.
+
+ The stable-tail sort of a node "h" is defined as the sequence:
+ sts(h) := [h] + excl(h) + sts(pt(h))
+ where excl(h) := u for u in sts(px(h)) if u not in ancestors(pt(h))
+
+ This implementation uses a call-stack whose size is
+ O(number of open merges).
+
+ As such, this implementation exists mainly as a defining reference.
+ """
+ cursor_rev = head_rev
+ while cursor_rev != nullrev:
+ yield cursor_rev
+
+ p1, p2 = _nonoedipal_parent_revs(cl, cursor_rev)
+ if p1 == nullrev:
+ cursor_rev = p2
+ elif p2 == nullrev:
+ cursor_rev = p1
+ else:
+ px, pt = _sorted_parents(cl, p1, p2)
+
+ tail_ancestors = ancestor.lazyancestors(
+ cl.parentrevs, (pt,), inclusive=True
+ )
+ exclusive_ancestors = (
+ a for a in _stable_tail_sort(cl, px) if a not in tail_ancestors
+ )
+
+ excl_part_size = cl.fast_rank(cursor_rev) - cl.fast_rank(pt) - 1
+ yield from itertools.islice(exclusive_ancestors, excl_part_size)
+ cursor_rev = pt