view mercurial/worker.py @ 45892:06b64fabf91c

copies: cache the ancestor checking call when tracing copy A good share of the time spent in this function is spent doing ancestors checking. To avoid spending time in duplicated call, we cache the result of calls. In the slower case, this provide a quite significant performance boost. Below are the result for a set of selected pairs (many of them pathological): (And further down is another table that summarize the current state of filelog based vs changeset base copy tracing) The benchmark have been configured to be killed after 6 minutes of runtime, which mean that any detect slower than 2 minutes will be marked as "killed". This drop some useful information about how much slower these case are? but also prevent 99% of the benchmark time to be spent on case that can be labelled "very slow" anyway. Repo Case Source-Rev Dest-Rev Old-Time New-Time Difference Factor ------------------------------------------------------------------------------------------------------------------------------------ mercurial x_revs_x_added_0_copies ad6b123de1c7 39cfcef4f463 : 0.000044 s, 0.000044 s, +0.000000 s, ? 1.0000 mercurial x_revs_x_added_x_copies 2b1c78674230 0c1d10351869 : 0.000138 s, 0.000138 s, +0.000000 s, ? 1.0000 mercurial x000_revs_x000_added_x_copies 81f8ff2a9bf2 dd3267698d84 : 0.005067 s, 0.005052 s, -0.000015 s, ? 0.9970 pypy x_revs_x_added_0_copies aed021ee8ae8 099ed31b181b : 0.000218 s, 0.000219 s, +0.000001 s, ? 1.0046 pypy x_revs_x000_added_0_copies 4aa4e1f8e19a 359343b9ac0e : 0.000053 s, 0.000055 s, +0.000002 s, ? 1.0377 pypy x_revs_x_added_x_copies ac52eb7bbbb0 72e022663155 : 0.000125 s, 0.000128 s, +0.000003 s, ? 1.0240 pypy x_revs_x00_added_x_copies c3b14617fbd7 ace7255d9a26 : 0.001098 s, 0.001089 s, -0.000009 s, ? 0.9918 pypy x_revs_x000_added_x000_copies df6f7a526b60 a83dc6a2d56f : 0.017546 s, 0.017407 s, -0.000139 s, ? 0.9921 pypy x000_revs_xx00_added_0_copies 89a76aede314 2f22446ff07e : 0.096723 s, 0.094175 s, -0.002548 s, ? 0.9737 pypy x000_revs_x000_added_x_copies 8a3b5bfd266e 2c68e87c3efe : 0.271796 s, 0.238009 s, -0.033787 s, ? 0.8757 pypy x000_revs_x000_added_x000_copies 89a76aede314 7b3dda341c84 : 0.128602 s, 0.125876 s, -0.002726 s, ? 0.9788 pypy x0000_revs_x_added_0_copies d1defd0dc478 c9cb1334cc78 : 7.086742 s, 3.581556 s, -3.505186 s, ? 0.5054 pypy x0000_revs_xx000_added_0_copies bf2c629d0071 4ffed77c095c : 0.016634 s, 0.016721 s, +0.000087 s, ? 1.0052 pypy x0000_revs_xx000_added_x000_copies 08ea3258278e d9fa043f30c0 : 0.254225 s, 0.242367 s, -0.011858 s, ? 0.9534 netbeans x_revs_x_added_0_copies fb0955ffcbcd a01e9239f9e7 : 0.000166 s, 0.000165 s, -0.000001 s, ? 0.9940 netbeans x_revs_x000_added_0_copies 6f360122949f 20eb231cc7d0 : 0.000118 s, 0.000114 s, -0.000004 s, ? 0.9661 netbeans x_revs_x_added_x_copies 1ada3faf6fb6 5a39d12eecf4 : 0.000296 s, 0.000296 s, +0.000000 s, ? 1.0000 netbeans x_revs_x00_added_x_copies 35be93ba1e2c 9eec5e90c05f : 0.001137 s, 0.001124 s, -0.000013 s, ? 0.9886 netbeans x000_revs_xx00_added_0_copies eac3045b4fdd 51d4ae7f1290 : 0.014133 s, 0.013060 s, -0.001073 s, ? 0.9241 netbeans x000_revs_x000_added_x_copies e2063d266acd 6081d72689dc : 0.016988 s, 0.017112 s, +0.000124 s, ? 1.0073 netbeans x000_revs_x000_added_x000_copies ff453e9fee32 411350406ec2 : 0.676361 s, 0.660350 s, -0.016011 s, ? 0.9763 netbeans x0000_revs_xx000_added_x000_copies 588c2d1ced70 1aad62e59ddd : 12.515149 s, 10.032499 s, -2.482650 s, ? 0.8016 mozilla-central x_revs_x_added_0_copies 3697f962bb7b 7015fcdd43a2 : 0.000186 s, 0.000189 s, +0.000003 s, ? 1.0161 mozilla-central x_revs_x000_added_0_copies dd390860c6c9 40d0c5bed75d : 0.000459 s, 0.000462 s, +0.000003 s, ? 1.0065 mozilla-central x_revs_x_added_x_copies 8d198483ae3b 14207ffc2b2f : 0.000273 s, 0.000270 s, -0.000003 s, ? 0.9890 mozilla-central x_revs_x00_added_x_copies 98cbc58cc6bc 446a150332c3 : 0.001503 s, 0.001474 s, -0.000029 s, ? 0.9807 mozilla-central x_revs_x000_added_x000_copies 3c684b4b8f68 0a5e72d1b479 : 0.004862 s, 0.004806 s, -0.000056 s, ? 0.9885 mozilla-central x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 0.088291 s, 0.085150 s, -0.003141 s, ? 0.9644 mozilla-central x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 0.007113 s, 0.007064 s, -0.000049 s, ? 0.9931 mozilla-central x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 0.004687 s, 0.004741 s, +0.000054 s, ? 1.0115 mozilla-central x000_revs_x000_added_x000_copies 7c97034feb78 4407bd0c6330 : 0.198710 s, 0.190133 s, -0.008577 s, ? 0.9568 mozilla-central x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 0.036068 s, 0.035651 s, -0.000417 s, ? 0.9884 mozilla-central x0000_revs_xx000_added_x000_copies f78c615a656c 96a38b690156 : 0.465362 s, 0.440694 s, -0.024668 s, ? 0.9470 mozilla-central x00000_revs_x0000_added_x0000_copies 6832ae71433c 4c222a1d9a00 : 24.519684 s, 18.454163 s, -6.065521 s, ? 0.7526 mozilla-central x00000_revs_x00000_added_x000_copies 76caed42cf7c 1daa622bbe42 : 42.711897 s, 31.562719 s, -11.149178 s, ? 0.7390 mozilla-try x_revs_x_added_0_copies aaf6dde0deb8 9790f499805a : 0.001201 s, 0.001189 s, -0.000012 s, ? 0.9900 mozilla-try x_revs_x000_added_0_copies d8d0222927b4 5bb8ce8c7450 : 0.001216 s, 0.001204 s, -0.000012 s, ? 0.9901 mozilla-try x_revs_x_added_x_copies 092fcca11bdb 936255a0384a : 0.000595 s, 0.000586 s, -0.000009 s, ? 0.9849 mozilla-try x_revs_x00_added_x_copies b53d2fadbdb5 017afae788ec : 0.001856 s, 0.001845 s, -0.000011 s, ? 0.9941 mozilla-try x_revs_x000_added_x000_copies 20408ad61ce5 6f0ee96e21ad : 0.064936 s, 0.063822 s, -0.001114 s, ? 0.9828 mozilla-try x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 0.090601 s, 0.088038 s, -0.002563 s, ? 0.9717 mozilla-try x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 0.007510 s, 0.007389 s, -0.000121 s, ? 0.9839 mozilla-try x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 0.004911 s, 0.004868 s, -0.000043 s, ? 0.9912 mozilla-try x000_revs_x000_added_x000_copies 1346fd0130e4 4c65cbdabc1f : 0.233231 s, 0.222450 s, -0.010781 s, ? 0.9538 mozilla-try x0000_revs_x_added_0_copies 63519bfd42ee a36a2a865d92 : 0.419989 s, 0.370675 s, -0.049314 s, ? 0.8826 mozilla-try x0000_revs_x_added_x_copies 9fe69ff0762d bcabf2a78927 : 0.401521 s, 0.358020 s, -0.043501 s, ? 0.8917 mozilla-try x0000_revs_xx000_added_x_copies 156f6e2674f2 4d0f2c178e66 : 0.179555 s, 0.145235 s, -0.034320 s, ? 0.8089 mozilla-try x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 0.038004 s, 0.037606 s, -0.000398 s, ? 0.9895 mozilla-try x0000_revs_xx000_added_x000_copies 89294cd501d9 7ccb2fc7ccb5 : 52.838482 s, 7.382439 s, -45.456043 s, ? 0.1397 mozilla-try x0000_revs_x0000_added_x0000_copies e928c65095ed e951f4ad123a : 8.705874 s, 7.273506 s, -1.432368 s, ? 0.8355 mozilla-try x00000_revs_x00000_added_0_copies dc8a3ca7010e d16fde900c9c : 1.126708 s, 1.074593 s, -0.052115 s, ? 0.9537 mozilla-try x00000_revs_x0000_added_x0000_copies 8d3fafa80d4b eb884023b810 : 83.854020 s, 27.746195 s, -56.107825 s, ? 0.3309 Below is a table comparing the runtime of the current "filelog centric" algorithm, with the "changeset centric" one, we just modified. The changeset centric algorithm is a significant win in many scenario, but they are still various cases where it is quite slower. When many revision has to be considered the cost of retrieving the copy information, creating new dictionaries, merging dictionaries and checking if revision are ancestors of each other can slow things down. The rest of this series, will introduce a rust version of the copy tracing code to deal with most of theses issues. Repo Case Source-Rev Dest-Rev filelog sidedata Difference Factor --------------------------------------------------------------------------------------------------------------------------------------- mercurial x_revs_x_added_0_copies ad6b123de1c7 39cfcef4f463 : 0.000914 s, 0.000044 s, - 0.000870 s, ? 0.048140 mercurial x_revs_x_added_x_copies 2b1c78674230 0c1d10351869 : 0.001812 s, 0.000138 s, - 0.001674 s, ? 0.076159 mercurial x000_revs_x000_added_x_copies 81f8ff2a9bf2 dd3267698d84 : 0.017954 s, 0.005052 s, - 0.012902 s, ? 0.281386 pypy x_revs_x_added_0_copies aed021ee8ae8 099ed31b181b : 0.001509 s, 0.000219 s, - 0.001290 s, ? 0.145129 pypy x_revs_x000_added_0_copies 4aa4e1f8e19a 359343b9ac0e : 0.206881 s, 0.000055 s, - 0.206826 s, ? 0.000266 pypy x_revs_x_added_x_copies ac52eb7bbbb0 72e022663155 : 0.016951 s, 0.000128 s, - 0.016823 s, ? 0.007551 pypy x_revs_x00_added_x_copies c3b14617fbd7 ace7255d9a26 : 0.019096 s, 0.001089 s, - 0.018007 s, ? 0.057028 pypy x_revs_x000_added_x000_copies df6f7a526b60 a83dc6a2d56f : 0.762506 s, 0.017407 s, - 0.745099 s, ? 0.022829 pypy x000_revs_xx00_added_0_copies 89a76aede314 2f22446ff07e : 1.179211 s, 0.094175 s, - 1.085036 s, ? 0.079863 pypy x000_revs_x000_added_x_copies 8a3b5bfd266e 2c68e87c3efe : 1.249058 s, 0.238009 s, - 1.011049 s, ? 0.190551 pypy x000_revs_x000_added_x000_copies 89a76aede314 7b3dda341c84 : 1.614107 s, 0.125876 s, - 1.488231 s, ? 0.077985 pypy x0000_revs_x_added_0_copies d1defd0dc478 c9cb1334cc78 : 0.001064 s, 3.581556 s, + 3.580492 s, ? 3366.124060 pypy x0000_revs_xx000_added_0_copies bf2c629d0071 4ffed77c095c : 1.061275 s, 0.016721 s, - 1.044554 s, ? 0.015756 pypy x0000_revs_xx000_added_x000_copies 08ea3258278e d9fa043f30c0 : 1.341119 s, 0.242367 s, - 1.098752 s, ? 0.180720 netbeans x_revs_x_added_0_copies fb0955ffcbcd a01e9239f9e7 : 0.027803 s, 0.000165 s, - 0.027638 s, ? 0.005935 netbeans x_revs_x000_added_0_copies 6f360122949f 20eb231cc7d0 : 0.130014 s, 0.000114 s, - 0.129900 s, ? 0.000877 netbeans x_revs_x_added_x_copies 1ada3faf6fb6 5a39d12eecf4 : 0.024990 s, 0.000296 s, - 0.024694 s, ? 0.011845 netbeans x_revs_x00_added_x_copies 35be93ba1e2c 9eec5e90c05f : 0.052201 s, 0.001124 s, - 0.051077 s, ? 0.021532 netbeans x000_revs_xx00_added_0_copies eac3045b4fdd 51d4ae7f1290 : 0.037642 s, 0.013060 s, - 0.024582 s, ? 0.346953 netbeans x000_revs_x000_added_x_copies e2063d266acd 6081d72689dc : 0.197086 s, 0.017112 s, - 0.179974 s, ? 0.086825 netbeans x000_revs_x000_added_x000_copies ff453e9fee32 411350406ec2 : 0.935148 s, 0.660350 s, - 0.274798 s, ? 0.706145 netbeans x0000_revs_xx000_added_x000_copies 588c2d1ced70 1aad62e59ddd : 3.920674 s, 10.032499 s, + 6.111825 s, ? 2.558871 mozilla-central x_revs_x_added_0_copies 3697f962bb7b 7015fcdd43a2 : 0.024232 s, 0.000189 s, - 0.024043 s, ? 0.007800 mozilla-central x_revs_x000_added_0_copies dd390860c6c9 40d0c5bed75d : 0.141483 s, 0.000462 s, - 0.141021 s, ? 0.003265 mozilla-central x_revs_x_added_x_copies 8d198483ae3b 14207ffc2b2f : 0.025775 s, 0.000270 s, - 0.025505 s, ? 0.010475 mozilla-central x_revs_x00_added_x_copies 98cbc58cc6bc 446a150332c3 : 0.084922 s, 0.001474 s, - 0.083448 s, ? 0.017357 mozilla-central x_revs_x000_added_x000_copies 3c684b4b8f68 0a5e72d1b479 : 0.194784 s, 0.004806 s, - 0.189978 s, ? 0.024673 mozilla-central x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 2.161103 s, 0.085150 s, - 2.075953 s, ? 0.039401 mozilla-central x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 0.089347 s, 0.007064 s, - 0.082283 s, ? 0.079063 mozilla-central x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 0.732171 s, 0.004741 s, - 0.727430 s, ? 0.006475 mozilla-central x000_revs_x000_added_x000_copies 7c97034feb78 4407bd0c6330 : 1.157287 s, 0.190133 s, - 0.967154 s, ? 0.164292 mozilla-central x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 6.726568 s, 0.035651 s, - 6.690917 s, ? 0.005300 mozilla-central x0000_revs_xx000_added_x000_copies f78c615a656c 96a38b690156 : 3.266229 s, 0.440694 s, - 2.825535 s, ? 0.134924 mozilla-central x00000_revs_x0000_added_x0000_copies 6832ae71433c 4c222a1d9a00 : 15.860534 s, 18.454163 s, + 2.593629 s, ? 1.163527 mozilla-central x00000_revs_x00000_added_x000_copies 76caed42cf7c 1daa622bbe42 : 20.450475 s, 31.562719 s, +11.112244 s, ? 1.543373 mozilla-try x_revs_x_added_0_copies aaf6dde0deb8 9790f499805a : 0.080442 s, 0.001189 s, - 0.079253 s, ? 0.014781 mozilla-try x_revs_x000_added_0_copies d8d0222927b4 5bb8ce8c7450 : 0.497672 s, 0.001204 s, - 0.496468 s, ? 0.002419 mozilla-try x_revs_x_added_x_copies 092fcca11bdb 936255a0384a : 0.021183 s, 0.000586 s, - 0.020597 s, ? 0.027664 mozilla-try x_revs_x00_added_x_copies b53d2fadbdb5 017afae788ec : 0.230991 s, 0.001845 s, - 0.229146 s, ? 0.007987 mozilla-try x_revs_x000_added_x000_copies 20408ad61ce5 6f0ee96e21ad : 1.118461 s, 0.063822 s, - 1.054639 s, ? 0.057062 mozilla-try x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 2.206083 s, 0.088038 s, - 2.118045 s, ? 0.039907 mozilla-try x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 0.089404 s, 0.007389 s, - 0.082015 s, ? 0.082647 mozilla-try x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 0.733043 s, 0.004868 s, - 0.728175 s, ? 0.006641 mozilla-try x000_revs_x000_added_x000_copies 1346fd0130e4 4c65cbdabc1f : 1.163367 s, 0.222450 s, - 0.940917 s, ? 0.191212 mozilla-try x0000_revs_x_added_0_copies 63519bfd42ee a36a2a865d92 : 0.085456 s, 0.370675 s, + 0.285219 s, ? 4.337612 mozilla-try x0000_revs_x_added_x_copies 9fe69ff0762d bcabf2a78927 : 0.083601 s, 0.358020 s, + 0.274419 s, ? 4.282485 mozilla-try x0000_revs_xx000_added_x_copies 156f6e2674f2 4d0f2c178e66 : 7.366614 s, 0.145235 s, - 7.221379 s, ? 0.019715 mozilla-try x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 6.664464 s, 0.037606 s, - 6.626858 s, ? 0.005643 mozilla-try x0000_revs_xx000_added_x000_copies 89294cd501d9 7ccb2fc7ccb5 : 7.467836 s, 7.382439 s, - 0.085397 s, ? 0.988565 mozilla-try x0000_revs_x0000_added_x0000_copies e928c65095ed e951f4ad123a : 9.801294 s, 7.273506 s, - 2.527788 s, ? 0.742097 mozilla-try x00000_revs_x_added_0_copies 6a320851d377 1ebb79acd503 : 0.091886 s, killed mozilla-try x00000_revs_x00000_added_0_copies dc8a3ca7010e d16fde900c9c : 26.491140 s, 1.074593 s, -25.416547 s, ? 0.040564 mozilla-try x00000_revs_x_added_x_copies 5173c4b6f97c 95d83ee7242d : 0.092863 s, killed mozilla-try x00000_revs_x000_added_x_copies 9126823d0e9c ca82787bb23c : 0.226823 s, killed mozilla-try x00000_revs_x0000_added_x0000_copies 8d3fafa80d4b eb884023b810 : 18.914630 s, 27.746195 s, + 8.831565 s, ? 1.466917 mozilla-try x00000_revs_x00000_added_x0000_copies 1b661134e2ca 1ae03d022d6d : 21.198903 s, killed mozilla-try x00000_revs_x00000_added_x000_copies 9b2a99adc05e 8e29777b48e6 : 24.952268 s, killed Differential Revision: https://phab.mercurial-scm.org/D9296
author Pierre-Yves David <pierre-yves.david@octobus.net>
date Mon, 02 Nov 2020 11:03:56 +0100
parents 8f07f5a9c3de
children 89a2afe31e82
line wrap: on
line source

# worker.py - master-slave parallelism support
#
# Copyright 2013 Facebook, Inc.
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

import errno
import os
import signal
import sys
import threading
import time

try:
    import selectors

    selectors.BaseSelector
except ImportError:
    from .thirdparty import selectors2 as selectors

from .i18n import _
from . import (
    encoding,
    error,
    pycompat,
    scmutil,
    util,
)


def countcpus():
    '''try to count the number of CPUs on the system'''

    # posix
    try:
        n = int(os.sysconf('SC_NPROCESSORS_ONLN'))
        if n > 0:
            return n
    except (AttributeError, ValueError):
        pass

    # windows
    try:
        n = int(encoding.environ[b'NUMBER_OF_PROCESSORS'])
        if n > 0:
            return n
    except (KeyError, ValueError):
        pass

    return 1


def _numworkers(ui):
    s = ui.config(b'worker', b'numcpus')
    if s:
        try:
            n = int(s)
            if n >= 1:
                return n
        except ValueError:
            raise error.Abort(_(b'number of cpus must be an integer'))
    return min(max(countcpus(), 4), 32)


if pycompat.ispy3:

    class _blockingreader(object):
        def __init__(self, wrapped):
            self._wrapped = wrapped

        # Do NOT implement readinto() by making it delegate to
        # _wrapped.readinto(), since that is unbuffered. The unpickler is fine
        # with just read() and readline(), so we don't need to implement it.

        def readline(self):
            return self._wrapped.readline()

        # issue multiple reads until size is fulfilled
        def read(self, size=-1):
            if size < 0:
                return self._wrapped.readall()

            buf = bytearray(size)
            view = memoryview(buf)
            pos = 0

            while pos < size:
                ret = self._wrapped.readinto(view[pos:])
                if not ret:
                    break
                pos += ret

            del view
            del buf[pos:]
            return bytes(buf)


else:

    def _blockingreader(wrapped):
        return wrapped


if pycompat.isposix or pycompat.iswindows:
    _STARTUP_COST = 0.01
    # The Windows worker is thread based. If tasks are CPU bound, threads
    # in the presence of the GIL result in excessive context switching and
    # this overhead can slow down execution.
    _DISALLOW_THREAD_UNSAFE = pycompat.iswindows
else:
    _STARTUP_COST = 1e30
    _DISALLOW_THREAD_UNSAFE = False


def worthwhile(ui, costperop, nops, threadsafe=True):
    '''try to determine whether the benefit of multiple processes can
    outweigh the cost of starting them'''

    if not threadsafe and _DISALLOW_THREAD_UNSAFE:
        return False

    linear = costperop * nops
    workers = _numworkers(ui)
    benefit = linear - (_STARTUP_COST * workers + linear / workers)
    return benefit >= 0.15


def worker(
    ui, costperarg, func, staticargs, args, hasretval=False, threadsafe=True
):
    '''run a function, possibly in parallel in multiple worker
    processes.

    returns a progress iterator

    costperarg - cost of a single task

    func - function to run. It is expected to return a progress iterator.

    staticargs - arguments to pass to every invocation of the function

    args - arguments to split into chunks, to pass to individual
    workers

    hasretval - when True, func and the current function return an progress
    iterator then a dict (encoded as an iterator that yield many (False, ..)
    then a (True, dict)). The dicts are joined in some arbitrary order, so
    overlapping keys are a bad idea.

    threadsafe - whether work items are thread safe and can be executed using
    a thread-based worker. Should be disabled for CPU heavy tasks that don't
    release the GIL.
    '''
    enabled = ui.configbool(b'worker', b'enabled')
    if enabled and worthwhile(ui, costperarg, len(args), threadsafe=threadsafe):
        return _platformworker(ui, func, staticargs, args, hasretval)
    return func(*staticargs + (args,))


def _posixworker(ui, func, staticargs, args, hasretval):
    workers = _numworkers(ui)
    oldhandler = signal.getsignal(signal.SIGINT)
    signal.signal(signal.SIGINT, signal.SIG_IGN)
    pids, problem = set(), [0]

    def killworkers():
        # unregister SIGCHLD handler as all children will be killed. This
        # function shouldn't be interrupted by another SIGCHLD; otherwise pids
        # could be updated while iterating, which would cause inconsistency.
        signal.signal(signal.SIGCHLD, oldchldhandler)
        # if one worker bails, there's no good reason to wait for the rest
        for p in pids:
            try:
                os.kill(p, signal.SIGTERM)
            except OSError as err:
                if err.errno != errno.ESRCH:
                    raise

    def waitforworkers(blocking=True):
        for pid in pids.copy():
            p = st = 0
            while True:
                try:
                    p, st = os.waitpid(pid, (0 if blocking else os.WNOHANG))
                    break
                except OSError as e:
                    if e.errno == errno.EINTR:
                        continue
                    elif e.errno == errno.ECHILD:
                        # child would already be reaped, but pids yet been
                        # updated (maybe interrupted just after waitpid)
                        pids.discard(pid)
                        break
                    else:
                        raise
            if not p:
                # skip subsequent steps, because child process should
                # be still running in this case
                continue
            pids.discard(p)
            st = _exitstatus(st)
            if st and not problem[0]:
                problem[0] = st

    def sigchldhandler(signum, frame):
        waitforworkers(blocking=False)
        if problem[0]:
            killworkers()

    oldchldhandler = signal.signal(signal.SIGCHLD, sigchldhandler)
    ui.flush()
    parentpid = os.getpid()
    pipes = []
    retval = {}
    for pargs in partition(args, min(workers, len(args))):
        # Every worker gets its own pipe to send results on, so we don't have to
        # implement atomic writes larger than PIPE_BUF. Each forked process has
        # its own pipe's descriptors in the local variables, and the parent
        # process has the full list of pipe descriptors (and it doesn't really
        # care what order they're in).
        rfd, wfd = os.pipe()
        pipes.append((rfd, wfd))
        # make sure we use os._exit in all worker code paths. otherwise the
        # worker may do some clean-ups which could cause surprises like
        # deadlock. see sshpeer.cleanup for example.
        # override error handling *before* fork. this is necessary because
        # exception (signal) may arrive after fork, before "pid =" assignment
        # completes, and other exception handler (dispatch.py) can lead to
        # unexpected code path without os._exit.
        ret = -1
        try:
            pid = os.fork()
            if pid == 0:
                signal.signal(signal.SIGINT, oldhandler)
                signal.signal(signal.SIGCHLD, oldchldhandler)

                def workerfunc():
                    for r, w in pipes[:-1]:
                        os.close(r)
                        os.close(w)
                    os.close(rfd)
                    for result in func(*(staticargs + (pargs,))):
                        os.write(wfd, util.pickle.dumps(result))
                    return 0

                ret = scmutil.callcatch(ui, workerfunc)
        except:  # parent re-raises, child never returns
            if os.getpid() == parentpid:
                raise
            exctype = sys.exc_info()[0]
            force = not issubclass(exctype, KeyboardInterrupt)
            ui.traceback(force=force)
        finally:
            if os.getpid() != parentpid:
                try:
                    ui.flush()
                except:  # never returns, no re-raises
                    pass
                finally:
                    os._exit(ret & 255)
        pids.add(pid)
    selector = selectors.DefaultSelector()
    for rfd, wfd in pipes:
        os.close(wfd)
        selector.register(os.fdopen(rfd, 'rb', 0), selectors.EVENT_READ)

    def cleanup():
        signal.signal(signal.SIGINT, oldhandler)
        waitforworkers()
        signal.signal(signal.SIGCHLD, oldchldhandler)
        selector.close()
        return problem[0]

    try:
        openpipes = len(pipes)
        while openpipes > 0:
            for key, events in selector.select():
                try:
                    res = util.pickle.load(_blockingreader(key.fileobj))
                    if hasretval and res[0]:
                        retval.update(res[1])
                    else:
                        yield res
                except EOFError:
                    selector.unregister(key.fileobj)
                    key.fileobj.close()
                    openpipes -= 1
                except IOError as e:
                    if e.errno == errno.EINTR:
                        continue
                    raise
    except:  # re-raises
        killworkers()
        cleanup()
        raise
    status = cleanup()
    if status:
        if status < 0:
            os.kill(os.getpid(), -status)
        raise error.WorkerError(status)
    if hasretval:
        yield True, retval


def _posixexitstatus(code):
    '''convert a posix exit status into the same form returned by
    os.spawnv

    returns None if the process was stopped instead of exiting'''
    if os.WIFEXITED(code):
        return os.WEXITSTATUS(code)
    elif os.WIFSIGNALED(code):
        return -(os.WTERMSIG(code))


def _windowsworker(ui, func, staticargs, args, hasretval):
    class Worker(threading.Thread):
        def __init__(
            self, taskqueue, resultqueue, func, staticargs, *args, **kwargs
        ):
            threading.Thread.__init__(self, *args, **kwargs)
            self._taskqueue = taskqueue
            self._resultqueue = resultqueue
            self._func = func
            self._staticargs = staticargs
            self._interrupted = False
            self.daemon = True
            self.exception = None

        def interrupt(self):
            self._interrupted = True

        def run(self):
            try:
                while not self._taskqueue.empty():
                    try:
                        args = self._taskqueue.get_nowait()
                        for res in self._func(*self._staticargs + (args,)):
                            self._resultqueue.put(res)
                            # threading doesn't provide a native way to
                            # interrupt execution. handle it manually at every
                            # iteration.
                            if self._interrupted:
                                return
                    except pycompat.queue.Empty:
                        break
            except Exception as e:
                # store the exception such that the main thread can resurface
                # it as if the func was running without workers.
                self.exception = e
                raise

    threads = []

    def trykillworkers():
        # Allow up to 1 second to clean worker threads nicely
        cleanupend = time.time() + 1
        for t in threads:
            t.interrupt()
        for t in threads:
            remainingtime = cleanupend - time.time()
            t.join(remainingtime)
            if t.is_alive():
                # pass over the workers joining failure. it is more
                # important to surface the inital exception than the
                # fact that one of workers may be processing a large
                # task and does not get to handle the interruption.
                ui.warn(
                    _(
                        b"failed to kill worker threads while "
                        b"handling an exception\n"
                    )
                )
                return

    workers = _numworkers(ui)
    resultqueue = pycompat.queue.Queue()
    taskqueue = pycompat.queue.Queue()
    retval = {}
    # partition work to more pieces than workers to minimize the chance
    # of uneven distribution of large tasks between the workers
    for pargs in partition(args, workers * 20):
        taskqueue.put(pargs)
    for _i in range(workers):
        t = Worker(taskqueue, resultqueue, func, staticargs)
        threads.append(t)
        t.start()
    try:
        while len(threads) > 0:
            while not resultqueue.empty():
                res = resultqueue.get()
                if hasretval and res[0]:
                    retval.update(res[1])
                else:
                    yield res
            threads[0].join(0.05)
            finishedthreads = [_t for _t in threads if not _t.is_alive()]
            for t in finishedthreads:
                if t.exception is not None:
                    raise t.exception
                threads.remove(t)
    except (Exception, KeyboardInterrupt):  # re-raises
        trykillworkers()
        raise
    while not resultqueue.empty():
        res = resultqueue.get()
        if hasretval and res[0]:
            retval.update(res[1])
        else:
            yield res
    if hasretval:
        yield True, retval


if pycompat.iswindows:
    _platformworker = _windowsworker
else:
    _platformworker = _posixworker
    _exitstatus = _posixexitstatus


def partition(lst, nslices):
    '''partition a list into N slices of roughly equal size

    The current strategy takes every Nth element from the input. If
    we ever write workers that need to preserve grouping in input
    we should consider allowing callers to specify a partition strategy.

    mpm is not a fan of this partitioning strategy when files are involved.
    In his words:

        Single-threaded Mercurial makes a point of creating and visiting
        files in a fixed order (alphabetical). When creating files in order,
        a typical filesystem is likely to allocate them on nearby regions on
        disk. Thus, when revisiting in the same order, locality is maximized
        and various forms of OS and disk-level caching and read-ahead get a
        chance to work.

        This effect can be quite significant on spinning disks. I discovered it
        circa Mercurial v0.4 when revlogs were named by hashes of filenames.
        Tarring a repo and copying it to another disk effectively randomized
        the revlog ordering on disk by sorting the revlogs by hash and suddenly
        performance of my kernel checkout benchmark dropped by ~10x because the
        "working set" of sectors visited no longer fit in the drive's cache and
        the workload switched from streaming to random I/O.

        What we should really be doing is have workers read filenames from a
        ordered queue. This preserves locality and also keeps any worker from
        getting more than one file out of balance.
    '''
    for i in range(nslices):
        yield lst[i::nslices]