view rust/hg-core/src/dagops.rs @ 50692:1c31b343e514

match: add `filepath:` pattern to match an exact filepath relative to the root It's useful in certain automated workflows to make sure we recurse in directories whose name conflicts with files in other revisions. In addition it makes it possible to avoid building a potentially costly regex, improving performance when the set of files to match explicitly is large. The benchmark below are run in the following configuration : # data-env-vars.name = mozilla-central-2018-08-01-zstd-sparse-revlog # benchmark.name = files # benchmark.variants.rev = tip # benchmark.variants.files = all-list-filepath-sorted # bin-env-vars.hg.flavor = no-rust It also includes timings using the re2 engine (through the `google-re2` module) to show how much can be saved by just using a better regexp engine. Pattern time (seconds) time using re2 ----------------------------------------------------------- just "." 0.4 0.4 list of "filepath:?" 1.3 1.3 list of "path:?" 25.7 3.9 list of patterns 29.7 10.4 As you can see, Without re2, using "filepath:" instead of "path:" is a huge win. With re2, it is still about three times faster to not have to build the regex.
author Rapha?l Gom?s <rgomes@octobus.net>
date Mon, 12 Jun 2023 16:51:08 +0200
parents e98fd81bb151
children 4c5f6e95df84
line wrap: on
line source

// dagops.rs
//
// Copyright 2019 Georges Racinet <georges.racinet@octobus.net>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.

//! Miscellaneous DAG operations
//!
//! # Terminology
//! - By *relative heads* of a collection of revision numbers (`Revision`), we
//!   mean those revisions that have no children among the collection.
//! - Similarly *relative roots* of a collection of `Revision`, we mean those
//!   whose parents, if any, don't belong to the collection.
use super::{Graph, GraphError, Revision, NULL_REVISION};
use crate::ancestors::AncestorsIterator;
use std::collections::{BTreeSet, HashSet};

fn remove_parents<S: std::hash::BuildHasher>(
    graph: &impl Graph,
    rev: Revision,
    set: &mut HashSet<Revision, S>,
) -> Result<(), GraphError> {
    for parent in graph.parents(rev)?.iter() {
        if *parent != NULL_REVISION {
            set.remove(parent);
        }
    }
    Ok(())
}

/// Relative heads out of some revisions, passed as an iterator.
///
/// These heads are defined as those revisions that have no children
/// among those emitted by the iterator.
///
/// # Performance notes
/// Internally, this clones the iterator, and builds a `HashSet` out of it.
///
/// This function takes an `Iterator` instead of `impl IntoIterator` to
/// guarantee that cloning the iterator doesn't result in cloning the full
/// construct it comes from.
pub fn heads<'a>(
    graph: &impl Graph,
    iter_revs: impl Clone + Iterator<Item = &'a Revision>,
) -> Result<HashSet<Revision>, GraphError> {
    let mut heads: HashSet<Revision> = iter_revs.clone().cloned().collect();
    heads.remove(&NULL_REVISION);
    for rev in iter_revs {
        if *rev != NULL_REVISION {
            remove_parents(graph, *rev, &mut heads)?;
        }
    }
    Ok(heads)
}

/// Retain in `revs` only its relative heads.
///
/// This is an in-place operation, so that control of the incoming
/// set is left to the caller.
/// - a direct Python binding would probably need to build its own `HashSet`
///   from an incoming iterable, even if its sole purpose is to extract the
///   heads.
/// - a Rust caller can decide whether cloning beforehand is appropriate
///
/// # Performance notes
/// Internally, this function will store a full copy of `revs` in a `Vec`.
pub fn retain_heads<S: std::hash::BuildHasher>(
    graph: &impl Graph,
    revs: &mut HashSet<Revision, S>,
) -> Result<(), GraphError> {
    revs.remove(&NULL_REVISION);
    // we need to construct an iterable copy of revs to avoid itering while
    // mutating
    let as_vec: Vec<Revision> = revs.iter().cloned().collect();
    for rev in as_vec {
        if rev != NULL_REVISION {
            remove_parents(graph, rev, revs)?;
        }
    }
    Ok(())
}

/// Roots of `revs`, passed as a `HashSet`
///
/// They are returned in arbitrary order
pub fn roots<G: Graph, S: std::hash::BuildHasher>(
    graph: &G,
    revs: &HashSet<Revision, S>,
) -> Result<Vec<Revision>, GraphError> {
    let mut roots: Vec<Revision> = Vec::new();
    for rev in revs {
        if graph
            .parents(*rev)?
            .iter()
            .filter(|p| **p != NULL_REVISION)
            .all(|p| !revs.contains(p))
        {
            roots.push(*rev);
        }
    }
    Ok(roots)
}

/// Compute the topological range between two collections of revisions
///
/// This is equivalent to the revset `<roots>::<heads>`.
///
/// Currently, the given `Graph` has to implement `Clone`, which means
/// actually cloning just a reference-counted Python pointer if
/// it's passed over through `rust-cpython`. This is due to the internal
/// use of `AncestorsIterator`
///
/// # Algorithmic details
///
/// This is a two-pass swipe inspired from what `reachableroots2` from
/// `mercurial.cext.parsers` does to obtain the same results.
///
/// - first, we climb up the DAG from `heads` in topological order, keeping
///   them in the vector `heads_ancestors` vector, and adding any element of
///   `roots` we find among them to the resulting range.
/// - Then, we iterate on that recorded vector so that a revision is always
///   emitted after its parents and add all revisions whose parents are already
///   in the range to the results.
///
/// # Performance notes
///
/// The main difference with the C implementation is that
/// the latter uses a flat array with bit flags, instead of complex structures
/// like `HashSet`, making it faster in most scenarios. In theory, it's
/// possible that the present implementation could be more memory efficient
/// for very large repositories with many branches.
pub fn range(
    graph: &(impl Graph + Clone),
    roots: impl IntoIterator<Item = Revision>,
    heads: impl IntoIterator<Item = Revision>,
) -> Result<BTreeSet<Revision>, GraphError> {
    let mut range = BTreeSet::new();
    let roots: HashSet<Revision> = roots.into_iter().collect();
    let min_root: Revision = match roots.iter().cloned().min() {
        None => {
            return Ok(range);
        }
        Some(r) => r,
    };

    // Internally, AncestorsIterator currently maintains a `HashSet`
    // of all seen revision, which is also what we record, albeit in an ordered
    // way. There's room for improvement on this duplication.
    let ait = AncestorsIterator::new(graph.clone(), heads, min_root, true)?;
    let mut heads_ancestors: Vec<Revision> = Vec::new();
    for revres in ait {
        let rev = revres?;
        if roots.contains(&rev) {
            range.insert(rev);
        }
        heads_ancestors.push(rev);
    }

    for rev in heads_ancestors.into_iter().rev() {
        for parent in graph.parents(rev)?.iter() {
            if *parent != NULL_REVISION && range.contains(parent) {
                range.insert(rev);
            }
        }
    }
    Ok(range)
}

#[cfg(test)]
mod tests {

    use super::*;
    use crate::testing::SampleGraph;

    /// Apply `retain_heads()` to the given slice and return as a sorted `Vec`
    fn retain_heads_sorted(
        graph: &impl Graph,
        revs: &[Revision],
    ) -> Result<Vec<Revision>, GraphError> {
        let mut revs: HashSet<Revision> = revs.iter().cloned().collect();
        retain_heads(graph, &mut revs)?;
        let mut as_vec: Vec<Revision> = revs.iter().cloned().collect();
        as_vec.sort_unstable();
        Ok(as_vec)
    }

    #[test]
    fn test_retain_heads() -> Result<(), GraphError> {
        assert_eq!(retain_heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
        assert_eq!(
            retain_heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
            vec![1, 6, 12]
        );
        assert_eq!(
            retain_heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
            vec![3, 5, 8, 9]
        );
        Ok(())
    }

    /// Apply `heads()` to the given slice and return as a sorted `Vec`
    fn heads_sorted(
        graph: &impl Graph,
        revs: &[Revision],
    ) -> Result<Vec<Revision>, GraphError> {
        let heads = heads(graph, revs.iter())?;
        let mut as_vec: Vec<Revision> = heads.iter().cloned().collect();
        as_vec.sort_unstable();
        Ok(as_vec)
    }

    #[test]
    fn test_heads() -> Result<(), GraphError> {
        assert_eq!(heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
        assert_eq!(
            heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
            vec![1, 6, 12]
        );
        assert_eq!(
            heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
            vec![3, 5, 8, 9]
        );
        Ok(())
    }

    /// Apply `roots()` and sort the result for easier comparison
    fn roots_sorted(
        graph: &impl Graph,
        revs: &[Revision],
    ) -> Result<Vec<Revision>, GraphError> {
        let set: HashSet<_> = revs.iter().cloned().collect();
        let mut as_vec = roots(graph, &set)?;
        as_vec.sort_unstable();
        Ok(as_vec)
    }

    #[test]
    fn test_roots() -> Result<(), GraphError> {
        assert_eq!(roots_sorted(&SampleGraph, &[4, 5, 6])?, vec![4]);
        assert_eq!(
            roots_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
            vec![0, 4, 12]
        );
        assert_eq!(
            roots_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
            vec![1, 8]
        );
        Ok(())
    }

    /// Apply `range()` and convert the result into a Vec for easier comparison
    fn range_vec(
        graph: impl Graph + Clone,
        roots: &[Revision],
        heads: &[Revision],
    ) -> Result<Vec<Revision>, GraphError> {
        range(&graph, roots.iter().cloned(), heads.iter().cloned())
            .map(|bs| bs.into_iter().collect())
    }

    #[test]
    fn test_range() -> Result<(), GraphError> {
        assert_eq!(range_vec(SampleGraph, &[0], &[4])?, vec![0, 1, 2, 4]);
        assert_eq!(range_vec(SampleGraph, &[0], &[8])?, vec![]);
        assert_eq!(
            range_vec(SampleGraph, &[5, 6], &[10, 11, 13])?,
            vec![5, 10]
        );
        assert_eq!(
            range_vec(SampleGraph, &[5, 6], &[10, 12])?,
            vec![5, 6, 9, 10, 12]
        );
        Ok(())
    }
}