Mercurial > public > mercurial-scm > hg
view mercurial/ancestor.py @ 15063:c20688b7c061 stable
setdiscovery: fix hang when #heads>200 (issue2971)
When setting up the next sample, we always add all of the heads, regardless
of the desired max sample size. But if the number of heads exceeds this
size, then we don't add any more nodes from the still undecided set.
(This is debatable per se, and I'll investigate it, but it's how we designed
it at the moment.)
The bug was that we always added the overall heads, not the heads of the
remaining undecided set. Thus, if #heads>200 (desired sample size), we
did not make progress any longer.
author | Peter Arrenbrecht <peter.arrenbrecht@gmail.com> |
---|---|
date | Thu, 25 Aug 2011 21:25:14 +0200 |
parents | 1ffeeb91c55d |
children | 0b03454abae7 |
line wrap: on
line source
# ancestor.py - generic DAG ancestor algorithm for mercurial # # Copyright 2006 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. import heapq def ancestor(a, b, pfunc): """ Returns the common ancestor of a and b that is furthest from a root (as measured by longest path) or None if no ancestor is found. If there are multiple common ancestors at the same distance, the first one found is returned. pfunc must return a list of parent vertices for a given vertex """ if a == b: return a a, b = sorted([a, b]) # find depth from root of all ancestors # depth is stored as a negative for heapq parentcache = {} visit = [a, b] depth = {} while visit: vertex = visit[-1] pl = pfunc(vertex) parentcache[vertex] = pl if not pl: depth[vertex] = 0 visit.pop() else: for p in pl: if p == a or p == b: # did we find a or b as a parent? return p # we're done if p not in depth: visit.append(p) if visit[-1] == vertex: # -(maximum distance of parents + 1) depth[vertex] = min([depth[p] for p in pl]) - 1 visit.pop() # traverse ancestors in order of decreasing distance from root def ancestors(vertex): h = [(depth[vertex], vertex)] seen = set() while h: d, n = heapq.heappop(h) if n not in seen: seen.add(n) yield (d, n) for p in parentcache[n]: heapq.heappush(h, (depth[p], p)) def generations(vertex): sg, s = None, set() for g, v in ancestors(vertex): if g != sg: if sg: yield sg, s sg, s = g, set((v,)) else: s.add(v) yield sg, s x = generations(a) y = generations(b) gx = x.next() gy = y.next() # increment each ancestor list until it is closer to root than # the other, or they match try: while True: if gx[0] == gy[0]: for v in gx[1]: if v in gy[1]: return v gy = y.next() gx = x.next() elif gx[0] > gy[0]: gy = y.next() else: gx = x.next() except StopIteration: return None