Mercurial > public > mercurial-scm > hg
view rust/hg-core/src/vfs.rs @ 49000:dd6b67d5c256 stable
rust: fix unsound `OwningDirstateMap`
As per the previous patch, `OwningDirstateMap` is unsound. Self-referential
structs are difficult to implement correctly in Rust since the compiler is
free to move structs around as much as it wants to. They are also very rarely
needed in practice, so the state-of-the-art on how they should be done within
the Rust rules is still a bit new.
The crate `ouroboros` is an attempt at providing a safe way (in the Rust sense)
of declaring self-referential structs. It is getting a lot attention and was
improved very quickly when soundness issues were found in the past: rather than
relying on our own (limited) review circle, we might as well use the de-facto
common crate to fix this problem. This will give us a much better chance of
finding issues should any new ones be discovered as well as the benefit of
fewer `unsafe` APIs of our own.
I was starting to think about how I would present a safe API to the old struct
but soon realized that the callback-based approach was already done in
`ouroboros`, along with a lot more care towards refusing incorrect structs.
In short: we don't return a mutable reference to the `DirstateMap` anymore, we
expect users of its API to pass a `FnOnce` that takes the map as an argument.
This allows our `OwningDirstateMap` to control the input and output lifetimes
of the code that modifies it to prevent such issues.
Changing to `ouroboros` meant changing every API with it, but it is relatively
low churn in the end. It correctly identified the example buggy modification of
`copy_map_insert` outlined in the previous patch as violating the borrow rules.
Differential Revision: https://phab.mercurial-scm.org/D12429
author | Rapha?l Gom?s <rgomes@octobus.net> |
---|---|
date | Tue, 05 Apr 2022 10:55:28 +0200 |
parents | abeae090ce67 |
children | ffd4b1f1c9cb |
line wrap: on
line source
use crate::errors::{HgError, IoErrorContext, IoResultExt}; use memmap2::{Mmap, MmapOptions}; use std::io::{ErrorKind, Write}; use std::path::{Path, PathBuf}; /// Filesystem access abstraction for the contents of a given "base" diretory #[derive(Clone, Copy)] pub struct Vfs<'a> { pub(crate) base: &'a Path, } struct FileNotFound(std::io::Error, PathBuf); impl Vfs<'_> { pub fn join(&self, relative_path: impl AsRef<Path>) -> PathBuf { self.base.join(relative_path) } pub fn symlink_metadata( &self, relative_path: impl AsRef<Path>, ) -> Result<std::fs::Metadata, HgError> { let path = self.join(relative_path); std::fs::symlink_metadata(&path).when_reading_file(&path) } pub fn read_link( &self, relative_path: impl AsRef<Path>, ) -> Result<PathBuf, HgError> { let path = self.join(relative_path); std::fs::read_link(&path).when_reading_file(&path) } pub fn read( &self, relative_path: impl AsRef<Path>, ) -> Result<Vec<u8>, HgError> { let path = self.join(relative_path); std::fs::read(&path).when_reading_file(&path) } fn mmap_open_gen( &self, relative_path: impl AsRef<Path>, ) -> Result<Result<Mmap, FileNotFound>, HgError> { let path = self.join(relative_path); let file = match std::fs::File::open(&path) { Err(err) => { if let ErrorKind::NotFound = err.kind() { return Ok(Err(FileNotFound(err, path))); }; return (Err(err)).when_reading_file(&path); } Ok(file) => file, }; // TODO: what are the safety requirements here? let mmap = unsafe { MmapOptions::new().map(&file) } .when_reading_file(&path)?; Ok(Ok(mmap)) } pub fn mmap_open_opt( &self, relative_path: impl AsRef<Path>, ) -> Result<Option<Mmap>, HgError> { self.mmap_open_gen(relative_path).map(|res| res.ok()) } pub fn mmap_open( &self, relative_path: impl AsRef<Path>, ) -> Result<Mmap, HgError> { match self.mmap_open_gen(relative_path)? { Err(FileNotFound(err, path)) => Err(err).when_reading_file(&path), Ok(res) => Ok(res), } } pub fn rename( &self, relative_from: impl AsRef<Path>, relative_to: impl AsRef<Path>, ) -> Result<(), HgError> { let from = self.join(relative_from); let to = self.join(relative_to); std::fs::rename(&from, &to) .with_context(|| IoErrorContext::RenamingFile { from, to }) } pub fn remove_file( &self, relative_path: impl AsRef<Path>, ) -> Result<(), HgError> { let path = self.join(relative_path); std::fs::remove_file(&path) .with_context(|| IoErrorContext::RemovingFile(path)) } #[cfg(unix)] pub fn create_symlink( &self, relative_link_path: impl AsRef<Path>, target_path: impl AsRef<Path>, ) -> Result<(), HgError> { let link_path = self.join(relative_link_path); std::os::unix::fs::symlink(target_path, &link_path) .when_writing_file(&link_path) } /// Write `contents` into a temporary file, then rename to `relative_path`. /// This makes writing to a file "atomic": a reader opening that path will /// see either the previous contents of the file or the complete new /// content, never a partial write. pub fn atomic_write( &self, relative_path: impl AsRef<Path>, contents: &[u8], ) -> Result<(), HgError> { let mut tmp = tempfile::NamedTempFile::new_in(self.base) .when_writing_file(self.base)?; tmp.write_all(contents) .and_then(|()| tmp.flush()) .when_writing_file(tmp.path())?; let path = self.join(relative_path); tmp.persist(&path) .map_err(|e| e.error) .when_writing_file(&path)?; Ok(()) } } fn fs_metadata( path: impl AsRef<Path>, ) -> Result<Option<std::fs::Metadata>, HgError> { let path = path.as_ref(); match std::fs::metadata(path) { Ok(meta) => Ok(Some(meta)), Err(error) => match error.kind() { // TODO: when we require a Rust version where `NotADirectory` is // stable, invert this logic and return None for it and `NotFound` // and propagate any other error. ErrorKind::PermissionDenied => Err(error).with_context(|| { IoErrorContext::ReadingMetadata(path.to_owned()) }), _ => Ok(None), }, } } pub(crate) fn is_dir(path: impl AsRef<Path>) -> Result<bool, HgError> { Ok(fs_metadata(path)?.map_or(false, |meta| meta.is_dir())) } pub(crate) fn is_file(path: impl AsRef<Path>) -> Result<bool, HgError> { Ok(fs_metadata(path)?.map_or(false, |meta| meta.is_file())) }