Mercurial > public > mercurial-scm > hg
view mercurial/ancestor.py @ 12866:eddc20306ab6 stable
encoding: default ambiguous character to narrow
The current implementation of colwidth was treating 'A'mbiguous
characters as wide, which was incorrect in a non-East Asian context.
As per http://unicode.org/reports/tr11/#Recommendations, we should
instead default to 'narrow' if we don't know better. As character
width is dependent on the particular font used and we have no idea
what fonts are in use, this recommendation applies.
This introduces HGENCODINGAMBIGUOUS to get the old behavior back.
author | Matt Mackall <mpm@selenic.com> |
---|---|
date | Wed, 27 Oct 2010 15:35:21 -0500 |
parents | 4cdaf1adafc8 |
children | 22565ddb28e7 |
line wrap: on
line source
# ancestor.py - generic DAG ancestor algorithm for mercurial # # Copyright 2006 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. import heapq def ancestor(a, b, pfunc): """ return a minimal-distance ancestor of nodes a and b, or None if there is no such ancestor. Note that there can be several ancestors with the same (minimal) distance, and the one returned is arbitrary. pfunc must return a list of parent vertices for a given vertex """ if a == b: return a a, b = sorted([a, b]) # find depth from root of all ancestors parentcache = {} visit = [a, b] depth = {} while visit: vertex = visit[-1] pl = pfunc(vertex) parentcache[vertex] = pl if not pl: depth[vertex] = 0 visit.pop() else: for p in pl: if p == a or p == b: # did we find a or b as a parent? return p # we're done if p not in depth: visit.append(p) if visit[-1] == vertex: depth[vertex] = min([depth[p] for p in pl]) - 1 visit.pop() # traverse ancestors in order of decreasing distance from root def ancestors(vertex): h = [(depth[vertex], vertex)] seen = set() while h: d, n = heapq.heappop(h) if n not in seen: seen.add(n) yield (d, n) for p in parentcache[n]: heapq.heappush(h, (depth[p], p)) def generations(vertex): sg, s = None, set() for g, v in ancestors(vertex): if g != sg: if sg: yield sg, s sg, s = g, set((v,)) else: s.add(v) yield sg, s x = generations(a) y = generations(b) gx = x.next() gy = y.next() # increment each ancestor list until it is closer to root than # the other, or they match try: while 1: if gx[0] == gy[0]: for v in gx[1]: if v in gy[1]: return v gy = y.next() gx = x.next() elif gx[0] > gy[0]: gy = y.next() else: gx = x.next() except StopIteration: return None