Mercurial > public > mercurial-scm > hg
view mercurial/ancestor.py @ 11015:ee05131ca51a
wix: new GUID for contrib.guid
to comply with the component GUID rules of Windows Installer, applied to
the change 6d9ff3374a81
author | Adrian Buehlmann <adrian@cadifra.com> |
---|---|
date | Tue, 27 Apr 2010 09:47:33 +0200 |
parents | d6512b3e9ac0 |
children | 67bb9d78f05e |
line wrap: on
line source
# ancestor.py - generic DAG ancestor algorithm for mercurial # # Copyright 2006 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. import heapq def ancestor(a, b, pfunc): """ return a minimal-distance ancestor of nodes a and b, or None if there is no such ancestor. Note that there can be several ancestors with the same (minimal) distance, and the one returned is arbitrary. pfunc must return a list of parent vertices for a given vertex """ if a == b: return a # find depth from root of all ancestors parentcache = {} visit = [a, b] depth = {} while visit: vertex = visit[-1] pl = pfunc(vertex) parentcache[vertex] = pl if not pl: depth[vertex] = 0 visit.pop() else: for p in pl: if p == a or p == b: # did we find a or b as a parent? return p # we're done if p not in depth: visit.append(p) if visit[-1] == vertex: depth[vertex] = min([depth[p] for p in pl]) - 1 visit.pop() # traverse ancestors in order of decreasing distance from root def ancestors(vertex): h = [(depth[vertex], vertex)] seen = set() while h: d, n = heapq.heappop(h) if n not in seen: seen.add(n) yield (d, n) for p in parentcache[n]: heapq.heappush(h, (depth[p], p)) def generations(vertex): sg, s = None, set() for g, v in ancestors(vertex): if g != sg: if sg: yield sg, s sg, s = g, set((v,)) else: s.add(v) yield sg, s x = generations(a) y = generations(b) gx = x.next() gy = y.next() # increment each ancestor list until it is closer to root than # the other, or they match try: while 1: if gx[0] == gy[0]: for v in gx[1]: if v in gy[1]: return v gy = y.next() gx = x.next() elif gx[0] > gy[0]: gy = y.next() else: gx = x.next() except StopIteration: return None