Mercurial > public > mercurial-scm > hg
view rust/hg-core/src/logging.rs @ 51929:f2832de2a46c
interfaces: introduce and use a protocol class for the `bdiff` module
This is allowed by PEP 544[1], and we basically follow the example there. The
class here is copied from `mercurial.pure.bdiff`, and the implementation
removed.
There are several modules that have a few different implementations, and the
implementation chosen is controlled by `HGMODULEPOLICY`. The module is loaded
via `mercurial/policy.py`, and has been inferred by pytype as `Any` up to this
point. Therefore it and PyCharm were blind to all functions on the module, and
their signatures. Also, having multiple instances of the same module allows
their signatures to get out of sync.
Introducing a protocol class allows the loaded module that is stored in a
variable to be given type info, which cascades through the various places it is
used. This change alters 11 *.pyi files, for example. In theory, this would
also allow us to ensure the various implementations of the same module are kept
in alignment- simply import the module in a test module, attempt to pass it to a
function that uses the corresponding protocol as an argument, and run pytype on
it.
In practice, this doesn't work (yet). PyCharm (erroneously) flags imported
modules being passed where a protocol class is used[2]. Pytype has problems the
other way- it fails to detect when a module that doesn't adhere to the protocol
is passed to a protocol argument. The good news is that mypy properly detects
this case. The bad news is that mypy spews a bunch of other errors when
importing even simple modules, like the various `bdiff` modules. Therefore I'm
punting on the tests for now because the type info around a loaded module in
PyCharm is a clear win by itself.
[1] https://peps.python.org/pep-0544/#modules-as-implementations-of-protocols
[2] https://youtrack.jetbrains.com/issue/PY-58679/Support-modules-implementing-protocols
author | Matt Harbison <matt_harbison@yahoo.com> |
---|---|
date | Sat, 28 Sep 2024 19:12:18 -0400 |
parents | db7dbe6f7bb2 |
children | 7be39c5110c9 |
line wrap: on
line source
use crate::errors::{HgError, HgResultExt, IoErrorContext, IoResultExt}; use crate::vfs::VfsImpl; use std::io::Write; /// An utility to append to a log file with the given name, and optionally /// rotate it after it reaches a certain maximum size. /// /// Rotation works by renaming "example.log" to "example.log.1", after renaming /// "example.log.1" to "example.log.2" etc up to the given maximum number of /// files. pub struct LogFile<'a> { vfs: VfsImpl, name: &'a str, max_size: Option<u64>, max_files: u32, } impl<'a> LogFile<'a> { pub fn new(vfs: VfsImpl, name: &'a str) -> Self { Self { vfs, name, max_size: None, max_files: 0, } } /// Rotate before writing to a log file that was already larger than the /// given size, in bytes. `None` disables rotation. pub fn max_size(mut self, value: Option<u64>) -> Self { self.max_size = value; self } /// Keep this many rotated files `{name}.1` up to `{name}.{max}`, in /// addition to the original `{name}` file. pub fn max_files(mut self, value: u32) -> Self { self.max_files = value; self } /// Append the given `bytes` as-is to the log file, after rotating if /// needed. /// /// No trailing newline is added. Make sure to include one in `bytes` if /// desired. pub fn write(&self, bytes: &[u8]) -> Result<(), HgError> { let path = self.vfs.join(self.name); let context = || IoErrorContext::WritingFile(path.clone()); let open = || { std::fs::OpenOptions::new() .create(true) .append(true) .open(&path) .with_context(context) }; let mut file = open()?; if let Some(max_size) = self.max_size { if file.metadata().with_context(context)?.len() >= max_size { // For example with `max_files == 5`, the first iteration of // this loop has `i == 4` and renames `{name}.4` to `{name}.5`. // The last iteration renames `{name}.1` to // `{name}.2` for i in (1..self.max_files).rev() { self.vfs .rename( format!("{}.{}", self.name, i), format!("{}.{}", self.name, i + 1), ) .io_not_found_as_none()?; } // Then rename `{name}` to `{name}.1`. This is the // previously-opened `file`. self.vfs .rename(self.name, format!("{}.1", self.name)) .io_not_found_as_none()?; // Finally, create a new `{name}` file and replace our `file` // handle. file = open()?; } } file.write_all(bytes).with_context(context)?; file.sync_all().with_context(context) } } #[test] fn test_rotation() { let temp = tempfile::tempdir().unwrap(); let vfs = VfsImpl { base: temp.path().to_owned(), }; let logger = LogFile::new(vfs.clone(), "log") .max_size(Some(3)) .max_files(2); logger.write(b"one\n").unwrap(); logger.write(b"two\n").unwrap(); logger.write(b"3\n").unwrap(); logger.write(b"four\n").unwrap(); logger.write(b"five\n").unwrap(); assert_eq!(vfs.read("log").unwrap(), b"five\n"); assert_eq!(vfs.read("log.1").unwrap(), b"3\nfour\n"); assert_eq!(vfs.read("log.2").unwrap(), b"two\n"); assert!(vfs.read("log.3").io_not_found_as_none().unwrap().is_none()); }