view rust/hg-core/src/matchers.rs @ 44118:f81c17ec303c

hgdemandimport: apply lazy module loading to sys.meta_path finders Python's `sys.meta_path` finders are the primary objects whose job it is to find a module at import time. When `import` is called, Python iterates objects in this list and calls `o.find_spec(...)` to find a `ModuleSpec` (or None if the module couldn't be found by that finder). If no meta path finder can find a module, import fails. One of the default meta path finders is `PathFinder`. Its job is to import modules from the filesystem and is probably the most important importer. This finder looks at `sys.path` and `sys.path_hooks` to do its job. The `ModuleSpec` returned by `MetaPathImporter.find_spec()` has a `loader` attribute, which defines the concrete module loader to use. `sys.path_hooks` is a hook point for teaching `PathFinder` to instantiate custom loader types. Previously, we injected a custom `sys.path_hook` that told `PathFinder` to wrap the default loaders with a loader that creates a module object that is lazy. This approach worked. But its main limitation was that it only applied to the `PathFinder` meta path importer. There are other meta path importers that are registered. And in the case of PyOxidizer loading modules from memory, `PathFinder` doesn't come into play since PyOxidizer's own meta path importer was handling all imports. This commit changes our approach to lazy module loading by proxying all meta path importers. Specifically, we overload the `find_spec()` method to swap in a wrapped loader on the `ModuleSpec` before it is returned. The end result of this is all meta path importers should be lazy. As much as I would have loved to utilize .__class__ manipulation to achieve this, some meta path importers are implemented in C/Rust in such a way that they cannot be monkeypatched. This is why we use __getattribute__ to define a proxy. Also, this change could theoretically open us up to regressions in meta path importers whose loader is creating module objects which can't be monkeypatched. But I'm not aware of any of these in the wild. So I think we'll be safe. According to hyperfine, this change yields a decent startup time win of 5-6ms: ``` Benchmark #1: ~/.pyenv/versions/3.6.10/bin/python ./hg version Time (mean ? ?): 86.8 ms ? 0.5 ms [User: 78.0 ms, System: 8.7 ms] Range (min ? max): 86.0 ms ? 89.1 ms 50 runs Time (mean ? ?): 81.1 ms ? 2.7 ms [User: 74.5 ms, System: 6.5 ms] Range (min ? max): 77.8 ms ? 90.5 ms 50 runs Benchmark #2: ~/.pyenv/versions/3.7.6/bin/python ./hg version Time (mean ? ?): 78.9 ms ? 0.6 ms [User: 70.2 ms, System: 8.7 ms] Range (min ? max): 78.1 ms ? 81.2 ms 50 runs Time (mean ? ?): 73.4 ms ? 0.6 ms [User: 65.3 ms, System: 8.0 ms] Range (min ? max): 72.4 ms ? 75.7 ms 50 runs Benchmark #3: ~/.pyenv/versions/3.8.1/bin/python ./hg version Time (mean ? ?): 78.1 ms ? 0.6 ms [User: 70.2 ms, System: 7.9 ms] Range (min ? max): 77.4 ms ? 80.9 ms 50 runs Time (mean ? ?): 72.1 ms ? 0.4 ms [User: 64.4 ms, System: 7.6 ms] Range (min ? max): 71.4 ms ? 74.1 ms 50 runs ``` Differential Revision: https://phab.mercurial-scm.org/D7954
author Gregory Szorc <gregory.szorc@gmail.com>
date Mon, 20 Jan 2020 23:51:25 -0800
parents 72bced4f2936
children 54d185eb24b5
line wrap: on
line source

// matchers.rs
//
// Copyright 2019 Raphaël Gomès <rgomes@octobus.net>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.

//! Structs and types for matching files and directories.

use crate::{utils::hg_path::HgPath, DirsMultiset, DirstateMapError};
use std::collections::HashSet;
use std::iter::FromIterator;

pub enum VisitChildrenSet<'a> {
    /// Don't visit anything
    Empty,
    /// Only visit this directory
    This,
    /// Visit this directory and these subdirectories
    /// TODO Should we implement a `NonEmptyHashSet`?
    Set(HashSet<&'a HgPath>),
    /// Visit this directory and all subdirectories
    Recursive,
}

pub trait Matcher {
    /// Explicitly listed files
    fn file_set(&self) -> Option<&HashSet<&HgPath>>;
    /// Returns whether `filename` is in `file_set`
    fn exact_match(&self, filename: impl AsRef<HgPath>) -> bool;
    /// Returns whether `filename` is matched by this matcher
    fn matches(&self, filename: impl AsRef<HgPath>) -> bool;
    /// Decides whether a directory should be visited based on whether it
    /// has potential matches in it or one of its subdirectories, and
    /// potentially lists which subdirectories of that directory should be
    /// visited. This is based on the match's primary, included, and excluded
    /// patterns.
    ///
    /// # Example
    ///
    /// Assume matchers `['path:foo/bar', 'rootfilesin:qux']`, we would
    /// return the following values (assuming the implementation of
    /// visit_children_set is capable of recognizing this; some implementations
    /// are not).
    ///
    /// ```text
    /// ```ignore
    /// '' -> {'foo', 'qux'}
    /// 'baz' -> set()
    /// 'foo' -> {'bar'}
    /// // Ideally this would be `Recursive`, but since the prefix nature of
    /// // matchers is applied to the entire matcher, we have to downgrade this
    /// // to `This` due to the (yet to be implemented in Rust) non-prefix
    /// // `RootFilesIn'-kind matcher being mixed in.
    /// 'foo/bar' -> 'this'
    /// 'qux' -> 'this'
    /// ```
    /// # Important
    ///
    /// Most matchers do not know if they're representing files or
    /// directories. They see `['path:dir/f']` and don't know whether `f` is a
    /// file or a directory, so `visit_children_set('dir')` for most matchers
    /// will return `HashSet{ HgPath { "f" } }`, but if the matcher knows it's
    /// a file (like the yet to be implemented in Rust `ExactMatcher` does),
    /// it may return `VisitChildrenSet::This`.
    /// Do not rely on the return being a `HashSet` indicating that there are
    /// no files in this dir to investigate (or equivalently that if there are
    /// files to investigate in 'dir' that it will always return
    /// `VisitChildrenSet::This`).
    fn visit_children_set(
        &self,
        directory: impl AsRef<HgPath>,
    ) -> VisitChildrenSet;
    /// Matcher will match everything and `files_set()` will be empty:
    /// optimization might be possible.
    fn matches_everything(&self) -> bool;
    /// Matcher will match exactly the files in `files_set()`: optimization
    /// might be possible.
    fn is_exact(&self) -> bool;
}

/// Matches everything.
///```
/// use hg::{ matchers::{Matcher, AlwaysMatcher}, utils::hg_path::HgPath };
///
/// let matcher = AlwaysMatcher;
///
/// assert_eq!(matcher.matches(HgPath::new(b"whatever")), true);
/// assert_eq!(matcher.matches(HgPath::new(b"b.txt")), true);
/// assert_eq!(matcher.matches(HgPath::new(b"main.c")), true);
/// assert_eq!(matcher.matches(HgPath::new(br"re:.*\.c$")), true);
/// ```
#[derive(Debug)]
pub struct AlwaysMatcher;

impl Matcher for AlwaysMatcher {
    fn file_set(&self) -> Option<&HashSet<&HgPath>> {
        None
    }
    fn exact_match(&self, _filename: impl AsRef<HgPath>) -> bool {
        false
    }
    fn matches(&self, _filename: impl AsRef<HgPath>) -> bool {
        true
    }
    fn visit_children_set(
        &self,
        _directory: impl AsRef<HgPath>,
    ) -> VisitChildrenSet {
        VisitChildrenSet::Recursive
    }
    fn matches_everything(&self) -> bool {
        true
    }
    fn is_exact(&self) -> bool {
        false
    }
}

/// Matches the input files exactly. They are interpreted as paths, not
/// patterns.
///
///```
/// use hg::{ matchers::{Matcher, FileMatcher}, utils::hg_path::HgPath };
///
/// let files = [HgPath::new(b"a.txt"), HgPath::new(br"re:.*\.c$")];
/// let matcher = FileMatcher::new(&files).unwrap();
///
/// assert_eq!(matcher.matches(HgPath::new(b"a.txt")), true);
/// assert_eq!(matcher.matches(HgPath::new(b"b.txt")), false);
/// assert_eq!(matcher.matches(HgPath::new(b"main.c")), false);
/// assert_eq!(matcher.matches(HgPath::new(br"re:.*\.c$")), true);
/// ```
#[derive(Debug)]
pub struct FileMatcher<'a> {
    files: HashSet<&'a HgPath>,
    dirs: DirsMultiset,
}

impl<'a> FileMatcher<'a> {
    pub fn new(
        files: &'a [impl AsRef<HgPath>],
    ) -> Result<Self, DirstateMapError> {
        Ok(Self {
            files: HashSet::from_iter(files.iter().map(|f| f.as_ref())),
            dirs: DirsMultiset::from_manifest(files)?,
        })
    }
    fn inner_matches(&self, filename: impl AsRef<HgPath>) -> bool {
        self.files.contains(filename.as_ref())
    }
}

impl<'a> Matcher for FileMatcher<'a> {
    fn file_set(&self) -> Option<&HashSet<&HgPath>> {
        Some(&self.files)
    }
    fn exact_match(&self, filename: impl AsRef<HgPath>) -> bool {
        self.inner_matches(filename)
    }
    fn matches(&self, filename: impl AsRef<HgPath>) -> bool {
        self.inner_matches(filename)
    }
    fn visit_children_set(
        &self,
        _directory: impl AsRef<HgPath>,
    ) -> VisitChildrenSet {
        // TODO implement once we have `status.traverse`
        // This is useless until unknown files are taken into account
        // Which will not need to happen before the `IncludeMatcher`.
        unimplemented!()
    }
    fn matches_everything(&self) -> bool {
        false
    }
    fn is_exact(&self) -> bool {
        true
    }
}